Description: The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 and hartogslem2 ) proof can be given using the axiom of choice, see ondomon . As its label indicates, this result is used to justify the definition of the Hartogs function df-har . (Contributed by Jeff Hankins, 22-Oct-2009) (Revised by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hartogs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon | |
|
2 | vex | |
|
3 | onelss | |
|
4 | 3 | imp | |
5 | ssdomg | |
|
6 | 2 4 5 | mpsyl | |
7 | 1 6 | jca | |
8 | domtr | |
|
9 | 8 | anim2i | |
10 | 9 | anassrs | |
11 | 7 10 | sylan | |
12 | 11 | exp31 | |
13 | 12 | com12 | |
14 | 13 | impd | |
15 | breq1 | |
|
16 | 15 | elrab | |
17 | breq1 | |
|
18 | 17 | elrab | |
19 | 14 16 18 | 3imtr4g | |
20 | 19 | imp | |
21 | 20 | gen2 | |
22 | dftr2 | |
|
23 | 21 22 | mpbir | |
24 | ssrab2 | |
|
25 | ordon | |
|
26 | trssord | |
|
27 | 23 24 25 26 | mp3an | |
28 | eqid | |
|
29 | eqid | |
|
30 | 28 29 | hartogslem2 | |
31 | elong | |
|
32 | 30 31 | syl | |
33 | 27 32 | mpbiri | |