Metamath Proof Explorer


Theorem hartogs

Description: The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 and hartogslem2 ) proof can be given using the axiom of choice, see ondomon . As its label indicates, this result is used to justify the definition of the Hartogs function df-har . (Contributed by Jeff Hankins, 22-Oct-2009) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion hartogs AVxOn|xAOn

Proof

Step Hyp Ref Expression
1 onelon zOnyzyOn
2 vex zV
3 onelss zOnyzyz
4 3 imp zOnyzyz
5 ssdomg zVyzyz
6 2 4 5 mpsyl zOnyzyz
7 1 6 jca zOnyzyOnyz
8 domtr yzzAyA
9 8 anim2i yOnyzzAyOnyA
10 9 anassrs yOnyzzAyOnyA
11 7 10 sylan zOnyzzAyOnyA
12 11 exp31 zOnyzzAyOnyA
13 12 com12 yzzOnzAyOnyA
14 13 impd yzzOnzAyOnyA
15 breq1 x=zxAzA
16 15 elrab zxOn|xAzOnzA
17 breq1 x=yxAyA
18 17 elrab yxOn|xAyOnyA
19 14 16 18 3imtr4g yzzxOn|xAyxOn|xA
20 19 imp yzzxOn|xAyxOn|xA
21 20 gen2 yzyzzxOn|xAyxOn|xA
22 dftr2 TrxOn|xAyzyzzxOn|xAyxOn|xA
23 21 22 mpbir TrxOn|xA
24 ssrab2 xOn|xAOn
25 ordon OrdOn
26 trssord TrxOn|xAxOn|xAOnOrdOnOrdxOn|xA
27 23 24 25 26 mp3an OrdxOn|xA
28 eqid ry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr=ry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
29 eqid st|wyzys=gwt=gzwEz=st|wyzys=gwt=gzwEz
30 28 29 hartogslem2 AVxOn|xAV
31 elong xOn|xAVxOn|xAOnOrdxOn|xA
32 30 31 syl AVxOn|xAOnOrdxOn|xA
33 27 32 mpbiri AVxOn|xAOn