| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wofib.1 |
|
| 2 |
|
wofi |
|
| 3 |
|
cnvso |
|
| 4 |
|
wofi |
|
| 5 |
3 4
|
sylanb |
|
| 6 |
2 5
|
jca |
|
| 7 |
|
weso |
|
| 8 |
7
|
adantr |
|
| 9 |
|
peano2 |
|
| 10 |
|
sucidg |
|
| 11 |
|
vex |
|
| 12 |
|
vex |
|
| 13 |
11 12
|
brcnv |
|
| 14 |
|
epel |
|
| 15 |
13 14
|
bitri |
|
| 16 |
|
eleq2 |
|
| 17 |
15 16
|
bitrid |
|
| 18 |
17
|
rspcev |
|
| 19 |
9 10 18
|
syl2anc |
|
| 20 |
|
dfrex2 |
|
| 21 |
19 20
|
sylib |
|
| 22 |
21
|
nrex |
|
| 23 |
|
ordom |
|
| 24 |
|
eqid |
|
| 25 |
24
|
oicl |
|
| 26 |
|
ordtri1 |
|
| 27 |
23 25 26
|
mp2an |
|
| 28 |
24
|
oion |
|
| 29 |
1 28
|
mp1i |
|
| 30 |
|
simpr |
|
| 31 |
29 30
|
ssexd |
|
| 32 |
24
|
oiiso |
|
| 33 |
1 32
|
mpan |
|
| 34 |
|
isocnv2 |
|
| 35 |
33 34
|
sylib |
|
| 36 |
|
wefr |
|
| 37 |
|
isofr |
|
| 38 |
37
|
biimpar |
|
| 39 |
35 36 38
|
syl2an |
|
| 40 |
39
|
adantr |
|
| 41 |
|
1onn |
|
| 42 |
|
ne0i |
|
| 43 |
41 42
|
mp1i |
|
| 44 |
|
fri |
|
| 45 |
31 40 30 43 44
|
syl22anc |
|
| 46 |
45
|
ex |
|
| 47 |
27 46
|
biimtrrid |
|
| 48 |
22 47
|
mt3i |
|
| 49 |
|
ssid |
|
| 50 |
|
ssnnfi |
|
| 51 |
48 49 50
|
sylancl |
|
| 52 |
|
simpl |
|
| 53 |
24
|
oien |
|
| 54 |
1 52 53
|
sylancr |
|
| 55 |
|
enfi |
|
| 56 |
54 55
|
syl |
|
| 57 |
51 56
|
mpbid |
|
| 58 |
8 57
|
jca |
|
| 59 |
6 58
|
impbii |
|