| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wofib.1 |
|- A e. _V |
| 2 |
|
wofi |
|- ( ( R Or A /\ A e. Fin ) -> R We A ) |
| 3 |
|
cnvso |
|- ( R Or A <-> `' R Or A ) |
| 4 |
|
wofi |
|- ( ( `' R Or A /\ A e. Fin ) -> `' R We A ) |
| 5 |
3 4
|
sylanb |
|- ( ( R Or A /\ A e. Fin ) -> `' R We A ) |
| 6 |
2 5
|
jca |
|- ( ( R Or A /\ A e. Fin ) -> ( R We A /\ `' R We A ) ) |
| 7 |
|
weso |
|- ( R We A -> R Or A ) |
| 8 |
7
|
adantr |
|- ( ( R We A /\ `' R We A ) -> R Or A ) |
| 9 |
|
peano2 |
|- ( y e. _om -> suc y e. _om ) |
| 10 |
|
sucidg |
|- ( y e. _om -> y e. suc y ) |
| 11 |
|
vex |
|- z e. _V |
| 12 |
|
vex |
|- y e. _V |
| 13 |
11 12
|
brcnv |
|- ( z `' _E y <-> y _E z ) |
| 14 |
|
epel |
|- ( y _E z <-> y e. z ) |
| 15 |
13 14
|
bitri |
|- ( z `' _E y <-> y e. z ) |
| 16 |
|
eleq2 |
|- ( z = suc y -> ( y e. z <-> y e. suc y ) ) |
| 17 |
15 16
|
bitrid |
|- ( z = suc y -> ( z `' _E y <-> y e. suc y ) ) |
| 18 |
17
|
rspcev |
|- ( ( suc y e. _om /\ y e. suc y ) -> E. z e. _om z `' _E y ) |
| 19 |
9 10 18
|
syl2anc |
|- ( y e. _om -> E. z e. _om z `' _E y ) |
| 20 |
|
dfrex2 |
|- ( E. z e. _om z `' _E y <-> -. A. z e. _om -. z `' _E y ) |
| 21 |
19 20
|
sylib |
|- ( y e. _om -> -. A. z e. _om -. z `' _E y ) |
| 22 |
21
|
nrex |
|- -. E. y e. _om A. z e. _om -. z `' _E y |
| 23 |
|
ordom |
|- Ord _om |
| 24 |
|
eqid |
|- OrdIso ( R , A ) = OrdIso ( R , A ) |
| 25 |
24
|
oicl |
|- Ord dom OrdIso ( R , A ) |
| 26 |
|
ordtri1 |
|- ( ( Ord _om /\ Ord dom OrdIso ( R , A ) ) -> ( _om C_ dom OrdIso ( R , A ) <-> -. dom OrdIso ( R , A ) e. _om ) ) |
| 27 |
23 25 26
|
mp2an |
|- ( _om C_ dom OrdIso ( R , A ) <-> -. dom OrdIso ( R , A ) e. _om ) |
| 28 |
24
|
oion |
|- ( A e. _V -> dom OrdIso ( R , A ) e. On ) |
| 29 |
1 28
|
mp1i |
|- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> dom OrdIso ( R , A ) e. On ) |
| 30 |
|
simpr |
|- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> _om C_ dom OrdIso ( R , A ) ) |
| 31 |
29 30
|
ssexd |
|- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> _om e. _V ) |
| 32 |
24
|
oiiso |
|- ( ( A e. _V /\ R We A ) -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) |
| 33 |
1 32
|
mpan |
|- ( R We A -> OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) ) |
| 34 |
|
isocnv2 |
|- ( OrdIso ( R , A ) Isom _E , R ( dom OrdIso ( R , A ) , A ) <-> OrdIso ( R , A ) Isom `' _E , `' R ( dom OrdIso ( R , A ) , A ) ) |
| 35 |
33 34
|
sylib |
|- ( R We A -> OrdIso ( R , A ) Isom `' _E , `' R ( dom OrdIso ( R , A ) , A ) ) |
| 36 |
|
wefr |
|- ( `' R We A -> `' R Fr A ) |
| 37 |
|
isofr |
|- ( OrdIso ( R , A ) Isom `' _E , `' R ( dom OrdIso ( R , A ) , A ) -> ( `' _E Fr dom OrdIso ( R , A ) <-> `' R Fr A ) ) |
| 38 |
37
|
biimpar |
|- ( ( OrdIso ( R , A ) Isom `' _E , `' R ( dom OrdIso ( R , A ) , A ) /\ `' R Fr A ) -> `' _E Fr dom OrdIso ( R , A ) ) |
| 39 |
35 36 38
|
syl2an |
|- ( ( R We A /\ `' R We A ) -> `' _E Fr dom OrdIso ( R , A ) ) |
| 40 |
39
|
adantr |
|- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> `' _E Fr dom OrdIso ( R , A ) ) |
| 41 |
|
1onn |
|- 1o e. _om |
| 42 |
|
ne0i |
|- ( 1o e. _om -> _om =/= (/) ) |
| 43 |
41 42
|
mp1i |
|- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> _om =/= (/) ) |
| 44 |
|
fri |
|- ( ( ( _om e. _V /\ `' _E Fr dom OrdIso ( R , A ) ) /\ ( _om C_ dom OrdIso ( R , A ) /\ _om =/= (/) ) ) -> E. y e. _om A. z e. _om -. z `' _E y ) |
| 45 |
31 40 30 43 44
|
syl22anc |
|- ( ( ( R We A /\ `' R We A ) /\ _om C_ dom OrdIso ( R , A ) ) -> E. y e. _om A. z e. _om -. z `' _E y ) |
| 46 |
45
|
ex |
|- ( ( R We A /\ `' R We A ) -> ( _om C_ dom OrdIso ( R , A ) -> E. y e. _om A. z e. _om -. z `' _E y ) ) |
| 47 |
27 46
|
biimtrrid |
|- ( ( R We A /\ `' R We A ) -> ( -. dom OrdIso ( R , A ) e. _om -> E. y e. _om A. z e. _om -. z `' _E y ) ) |
| 48 |
22 47
|
mt3i |
|- ( ( R We A /\ `' R We A ) -> dom OrdIso ( R , A ) e. _om ) |
| 49 |
|
ssid |
|- dom OrdIso ( R , A ) C_ dom OrdIso ( R , A ) |
| 50 |
|
ssnnfi |
|- ( ( dom OrdIso ( R , A ) e. _om /\ dom OrdIso ( R , A ) C_ dom OrdIso ( R , A ) ) -> dom OrdIso ( R , A ) e. Fin ) |
| 51 |
48 49 50
|
sylancl |
|- ( ( R We A /\ `' R We A ) -> dom OrdIso ( R , A ) e. Fin ) |
| 52 |
|
simpl |
|- ( ( R We A /\ `' R We A ) -> R We A ) |
| 53 |
24
|
oien |
|- ( ( A e. _V /\ R We A ) -> dom OrdIso ( R , A ) ~~ A ) |
| 54 |
1 52 53
|
sylancr |
|- ( ( R We A /\ `' R We A ) -> dom OrdIso ( R , A ) ~~ A ) |
| 55 |
|
enfi |
|- ( dom OrdIso ( R , A ) ~~ A -> ( dom OrdIso ( R , A ) e. Fin <-> A e. Fin ) ) |
| 56 |
54 55
|
syl |
|- ( ( R We A /\ `' R We A ) -> ( dom OrdIso ( R , A ) e. Fin <-> A e. Fin ) ) |
| 57 |
51 56
|
mpbid |
|- ( ( R We A /\ `' R We A ) -> A e. Fin ) |
| 58 |
8 57
|
jca |
|- ( ( R We A /\ `' R We A ) -> ( R Or A /\ A e. Fin ) ) |
| 59 |
6 58
|
impbii |
|- ( ( R Or A /\ A e. Fin ) <-> ( R We A /\ `' R We A ) ) |