Metamath Proof Explorer


Theorem hash1snb

Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017)

Ref Expression
Assertion hash1snb VWV=1aV=a

Proof

Step Hyp Ref Expression
1 id V=1V=1
2 hash1 1𝑜=1
3 1 2 eqtr4di V=1V=1𝑜
4 3 adantl VFinV=1V=1𝑜
5 1onn 1𝑜ω
6 nnfi 1𝑜ω1𝑜Fin
7 5 6 mp1i V=11𝑜Fin
8 hashen VFin1𝑜FinV=1𝑜V1𝑜
9 7 8 sylan2 VFinV=1V=1𝑜V1𝑜
10 4 9 mpbid VFinV=1V1𝑜
11 en1 V1𝑜aV=a
12 10 11 sylib VFinV=1aV=a
13 12 ex VFinV=1aV=a
14 13 a1d VFinVWV=1aV=a
15 hashinf VW¬VFinV=+∞
16 eqeq1 V=+∞V=1+∞=1
17 1re 1
18 renepnf 11+∞
19 df-ne 1+∞¬1=+∞
20 pm2.21 ¬1=+∞1=+∞aV=a
21 19 20 sylbi 1+∞1=+∞aV=a
22 17 18 21 mp2b 1=+∞aV=a
23 22 eqcoms +∞=1aV=a
24 16 23 syl6bi V=+∞V=1aV=a
25 15 24 syl VW¬VFinV=1aV=a
26 25 expcom ¬VFinVWV=1aV=a
27 14 26 pm2.61i VWV=1aV=a
28 fveq2 V=aV=a
29 hashsng aVa=1
30 29 elv a=1
31 28 30 eqtrdi V=aV=1
32 31 exlimiv aV=aV=1
33 27 32 impbid1 VWV=1aV=a