Metamath Proof Explorer


Theorem hausflimi

Description: One direction of hausflim . A filter in a Hausdorff space has at most one limit. (Contributed by FL, 14-Nov-2010) (Revised by Mario Carneiro, 21-Sep-2015)

Ref Expression
Assertion hausflimi JHaus*xxJfLimF

Proof

Step Hyp Ref Expression
1 simpl JHausxJfLimFyJfLimFxyJHaus
2 simprll JHausxJfLimFyJfLimFxyxJfLimF
3 eqid J=J
4 3 flimelbas xJfLimFxJ
5 2 4 syl JHausxJfLimFyJfLimFxyxJ
6 simprlr JHausxJfLimFyJfLimFxyyJfLimF
7 3 flimelbas yJfLimFyJ
8 6 7 syl JHausxJfLimFyJfLimFxyyJ
9 simprr JHausxJfLimFyJfLimFxyxy
10 3 hausnei JHausxJyJxyuJvJxuyvuv=
11 1 5 8 9 10 syl13anc JHausxJfLimFyJfLimFxyuJvJxuyvuv=
12 df-3an xuyvuv=xuyvuv=
13 simprl JHausxJfLimFyJfLimFxyxJfLimFyJfLimF
14 hausflimlem xJfLimFyJfLimFuJvJxuyvuv
15 14 3expa xJfLimFyJfLimFuJvJxuyvuv
16 13 15 sylanl1 JHausxJfLimFyJfLimFxyuJvJxuyvuv
17 16 a1d JHausxJfLimFyJfLimFxyuJvJxuyvxyuv
18 17 necon4d JHausxJfLimFyJfLimFxyuJvJxuyvuv=x=y
19 18 expimpd JHausxJfLimFyJfLimFxyuJvJxuyvuv=x=y
20 12 19 biimtrid JHausxJfLimFyJfLimFxyuJvJxuyvuv=x=y
21 20 rexlimdvva JHausxJfLimFyJfLimFxyuJvJxuyvuv=x=y
22 11 21 mpd JHausxJfLimFyJfLimFxyx=y
23 22 expr JHausxJfLimFyJfLimFxyx=y
24 23 necon1bd JHausxJfLimFyJfLimF¬x=yx=y
25 24 pm2.18d JHausxJfLimFyJfLimFx=y
26 25 ex JHausxJfLimFyJfLimFx=y
27 26 alrimivv JHausxyxJfLimFyJfLimFx=y
28 eleq1w x=yxJfLimFyJfLimF
29 28 mo4 *xxJfLimFxyxJfLimFyJfLimFx=y
30 27 29 sylibr JHaus*xxJfLimF