Metamath Proof Explorer


Theorem hdmapeq0

Description: Part of proof of part 12 in Baer p. 49 line 3. (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses hdmap12a.h H = LHyp K
hdmap12a.u U = DVecH K W
hdmap12a.v V = Base U
hdmap12a.o 0 ˙ = 0 U
hdmap12a.c C = LCDual K W
hdmap12a.q Q = 0 C
hdmap12a.s S = HDMap K W
hdmap12a.k φ K HL W H
hdmap12a.x φ T V
Assertion hdmapeq0 φ S T = Q T = 0 ˙

Proof

Step Hyp Ref Expression
1 hdmap12a.h H = LHyp K
2 hdmap12a.u U = DVecH K W
3 hdmap12a.v V = Base U
4 hdmap12a.o 0 ˙ = 0 U
5 hdmap12a.c C = LCDual K W
6 hdmap12a.q Q = 0 C
7 hdmap12a.s S = HDMap K W
8 hdmap12a.k φ K HL W H
9 hdmap12a.x φ T V
10 eqid LSpan U = LSpan U
11 eqid LSpan C = LSpan C
12 eqid mapd K W = mapd K W
13 1 2 3 10 5 11 12 7 8 9 hdmap10 φ mapd K W LSpan U T = LSpan C S T
14 1 12 2 4 5 6 8 mapd0 φ mapd K W 0 ˙ = Q
15 13 14 eqeq12d φ mapd K W LSpan U T = mapd K W 0 ˙ LSpan C S T = Q
16 eqid LSubSp U = LSubSp U
17 1 2 8 dvhlmod φ U LMod
18 3 16 10 lspsncl U LMod T V LSpan U T LSubSp U
19 17 9 18 syl2anc φ LSpan U T LSubSp U
20 4 16 lsssn0 U LMod 0 ˙ LSubSp U
21 17 20 syl φ 0 ˙ LSubSp U
22 1 2 16 12 8 19 21 mapd11 φ mapd K W LSpan U T = mapd K W 0 ˙ LSpan U T = 0 ˙
23 1 5 8 lcdlmod φ C LMod
24 eqid Base C = Base C
25 1 2 3 5 24 7 8 9 hdmapcl φ S T Base C
26 24 6 11 lspsneq0 C LMod S T Base C LSpan C S T = Q S T = Q
27 23 25 26 syl2anc φ LSpan C S T = Q S T = Q
28 15 22 27 3bitr3rd φ S T = Q LSpan U T = 0 ˙
29 3 4 10 lspsneq0 U LMod T V LSpan U T = 0 ˙ T = 0 ˙
30 17 9 29 syl2anc φ LSpan U T = 0 ˙ T = 0 ˙
31 28 30 bitrd φ S T = Q T = 0 ˙