Metamath Proof Explorer


Theorem hdmapffval

Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015)

Ref Expression
Hypothesis hdmapval.h H = LHyp K
Assertion hdmapffval K X HDMap K = w H a | [˙ I Base K I LTrn K w / e]˙ [˙ DVecH K w / u]˙ [˙Base u / v]˙ [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t

Proof

Step Hyp Ref Expression
1 hdmapval.h H = LHyp K
2 elex K X K V
3 fveq2 k = K LHyp k = LHyp K
4 3 1 eqtr4di k = K LHyp k = H
5 fveq2 k = K Base k = Base K
6 5 reseq2d k = K I Base k = I Base K
7 fveq2 k = K LTrn k = LTrn K
8 7 fveq1d k = K LTrn k w = LTrn K w
9 8 reseq2d k = K I LTrn k w = I LTrn K w
10 6 9 opeq12d k = K I Base k I LTrn k w = I Base K I LTrn K w
11 fveq2 k = K DVecH k = DVecH K
12 11 fveq1d k = K DVecH k w = DVecH K w
13 fveq2 k = K HDMap1 k = HDMap1 K
14 13 fveq1d k = K HDMap1 k w = HDMap1 K w
15 fveq2 k = K LCDual k = LCDual K
16 15 fveq1d k = K LCDual k w = LCDual K w
17 16 fveq2d k = K Base LCDual k w = Base LCDual K w
18 fveq2 k = K HVMap k = HVMap K
19 18 fveq1d k = K HVMap k w = HVMap K w
20 19 fveq1d k = K HVMap k w e = HVMap K w e
21 20 oteq2d k = K e HVMap k w e z = e HVMap K w e z
22 21 fveq2d k = K i e HVMap k w e z = i e HVMap K w e z
23 22 oteq2d k = K z i e HVMap k w e z t = z i e HVMap K w e z t
24 23 fveq2d k = K i z i e HVMap k w e z t = i z i e HVMap K w e z t
25 24 eqeq2d k = K y = i z i e HVMap k w e z t y = i z i e HVMap K w e z t
26 25 imbi2d k = K ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
27 26 ralbidv k = K z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
28 17 27 riotaeqbidv k = K ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t = ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
29 28 mpteq2dv k = K t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t = t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
30 29 eleq2d k = K a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
31 14 30 sbceqbid k = K [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
32 31 sbcbidv k = K [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t [˙Base u / v]˙ [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
33 12 32 sbceqbid k = K [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t [˙ DVecH K w / u]˙ [˙Base u / v]˙ [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
34 10 33 sbceqbid k = K [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t [˙ I Base K I LTrn K w / e]˙ [˙ DVecH K w / u]˙ [˙Base u / v]˙ [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
35 34 abbidv k = K a | [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t = a | [˙ I Base K I LTrn K w / e]˙ [˙ DVecH K w / u]˙ [˙Base u / v]˙ [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
36 4 35 mpteq12dv k = K w LHyp k a | [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t = w H a | [˙ I Base K I LTrn K w / e]˙ [˙ DVecH K w / u]˙ [˙Base u / v]˙ [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
37 df-hdmap HDMap = k V w LHyp k a | [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
38 36 37 1 mptfvmpt K V HDMap K = w H a | [˙ I Base K I LTrn K w / e]˙ [˙ DVecH K w / u]˙ [˙Base u / v]˙ [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t
39 2 38 syl K X HDMap K = w H a | [˙ I Base K I LTrn K w / e]˙ [˙ DVecH K w / u]˙ [˙Base u / v]˙ [˙ HDMap1 K w / i]˙ a t v ι y Base LCDual K w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap K w e z t