Metamath Proof Explorer


Theorem hdmaprnlem1N

Description: Part of proof of part 12 in Baer p. 49 line 10, Gu' =/= Gs. Our ( N{ v } ) is Baer's T. (Contributed by NM, 26-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
Assertion hdmaprnlem1N φLSuLs

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 1 2 9 dvhlmod φULMod
16 3 4 15 13 11 14 lspsnne2 φNuNv
17 eqid LSubSpU=LSubSpU
18 3 17 4 lspsncl ULModuVNuLSubSpU
19 15 13 18 syl2anc φNuLSubSpU
20 3 17 4 lspsncl ULModvVNvLSubSpU
21 15 11 20 syl2anc φNvLSubSpU
22 1 2 17 7 9 19 21 mapd11 φMNu=MNvNu=Nv
23 22 necon3bid φMNuMNvNuNv
24 16 23 mpbird φMNuMNv
25 1 2 3 4 5 6 7 8 9 13 hdmap10 φMNu=LSu
26 24 25 12 3netr3d φLSuLs