Metamath Proof Explorer


Theorem hdmapval2lem

Description: Lemma for hdmapval2 . (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapval2.h H = LHyp K
hdmapval2.e E = I Base K I LTrn K W
hdmapval2.u U = DVecH K W
hdmapval2.v V = Base U
hdmapval2.n N = LSpan U
hdmapval2.c C = LCDual K W
hdmapval2.d D = Base C
hdmapval2.j J = HVMap K W
hdmapval2.i I = HDMap1 K W
hdmapval2.s S = HDMap K W
hdmapval2.k φ K HL W H
hdmapval2.t φ T V
hdmapval2.f φ F D
Assertion hdmapval2lem φ S T = F z V ¬ z N E N T F = I z I E J E z T

Proof

Step Hyp Ref Expression
1 hdmapval2.h H = LHyp K
2 hdmapval2.e E = I Base K I LTrn K W
3 hdmapval2.u U = DVecH K W
4 hdmapval2.v V = Base U
5 hdmapval2.n N = LSpan U
6 hdmapval2.c C = LCDual K W
7 hdmapval2.d D = Base C
8 hdmapval2.j J = HVMap K W
9 hdmapval2.i I = HDMap1 K W
10 hdmapval2.s S = HDMap K W
11 hdmapval2.k φ K HL W H
12 hdmapval2.t φ T V
13 hdmapval2.f φ F D
14 1 2 3 4 5 6 7 8 9 10 11 12 hdmapval φ S T = ι h D | z V ¬ z N E N T h = I z I E J E z T
15 14 eqeq1d φ S T = F ι h D | z V ¬ z N E N T h = I z I E J E z T = F
16 eqid 0 U = 0 U
17 eqid LSpan C = LSpan C
18 eqid mapd K W = mapd K W
19 eqid Base K = Base K
20 eqid LTrn K W = LTrn K W
21 1 19 20 3 4 16 2 11 dvheveccl φ E V 0 U
22 1 3 4 16 5 6 17 18 8 11 21 mapdhvmap φ mapd K W N E = LSpan C J E
23 eqid 0 C = 0 C
24 1 3 4 16 6 7 23 8 11 21 hvmapcl2 φ J E D 0 C
25 24 eldifad φ J E D
26 1 3 4 16 5 6 7 17 18 9 11 22 21 25 12 hdmap1eu φ ∃! h D z V ¬ z N E N T h = I z I E J E z T
27 nfv h φ
28 nfcvd φ _ h F
29 nfvd φ h z V ¬ z N E N T F = I z I E J E z T
30 eqeq1 h = F h = I z I E J E z T F = I z I E J E z T
31 30 imbi2d h = F ¬ z N E N T h = I z I E J E z T ¬ z N E N T F = I z I E J E z T
32 31 ralbidv h = F z V ¬ z N E N T h = I z I E J E z T z V ¬ z N E N T F = I z I E J E z T
33 32 adantl φ h = F z V ¬ z N E N T h = I z I E J E z T z V ¬ z N E N T F = I z I E J E z T
34 27 28 29 13 33 riota2df φ ∃! h D z V ¬ z N E N T h = I z I E J E z T z V ¬ z N E N T F = I z I E J E z T ι h D | z V ¬ z N E N T h = I z I E J E z T = F
35 26 34 mpdan φ z V ¬ z N E N T F = I z I E J E z T ι h D | z V ¬ z N E N T h = I z I E J E z T = F
36 15 35 bitr4d φ S T = F z V ¬ z N E N T F = I z I E J E z T