Metamath Proof Explorer


Theorem hgmaprnlem5N

Description: Lemma for hgmaprnN . Eliminate t . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H = LHyp K
hgmaprnlem1.u U = DVecH K W
hgmaprnlem1.v V = Base U
hgmaprnlem1.r R = Scalar U
hgmaprnlem1.b B = Base R
hgmaprnlem1.t · ˙ = U
hgmaprnlem1.o 0 ˙ = 0 U
hgmaprnlem1.c C = LCDual K W
hgmaprnlem1.d D = Base C
hgmaprnlem1.p P = Scalar C
hgmaprnlem1.a A = Base P
hgmaprnlem1.e ˙ = C
hgmaprnlem1.q Q = 0 C
hgmaprnlem1.s S = HDMap K W
hgmaprnlem1.g G = HGMap K W
hgmaprnlem1.k φ K HL W H
hgmaprnlem1.z φ z A
Assertion hgmaprnlem5N φ z ran G

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H = LHyp K
2 hgmaprnlem1.u U = DVecH K W
3 hgmaprnlem1.v V = Base U
4 hgmaprnlem1.r R = Scalar U
5 hgmaprnlem1.b B = Base R
6 hgmaprnlem1.t · ˙ = U
7 hgmaprnlem1.o 0 ˙ = 0 U
8 hgmaprnlem1.c C = LCDual K W
9 hgmaprnlem1.d D = Base C
10 hgmaprnlem1.p P = Scalar C
11 hgmaprnlem1.a A = Base P
12 hgmaprnlem1.e ˙ = C
13 hgmaprnlem1.q Q = 0 C
14 hgmaprnlem1.s S = HDMap K W
15 hgmaprnlem1.g G = HGMap K W
16 hgmaprnlem1.k φ K HL W H
17 hgmaprnlem1.z φ z A
18 1 2 3 7 16 dvh1dim φ t V t 0 ˙
19 eldifsn t V 0 ˙ t V t 0 ˙
20 16 adantr φ t V 0 ˙ K HL W H
21 17 adantr φ t V 0 ˙ z A
22 simpr φ t V 0 ˙ t V 0 ˙
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 21 22 hgmaprnlem4N φ t V 0 ˙ z ran G
24 19 23 sylan2br φ t V t 0 ˙ z ran G
25 18 24 rexlimddv φ z ran G