Metamath Proof Explorer


Theorem hlatexch3N

Description: Rearrange join of atoms in an equality. (Contributed by NM, 29-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses hlatexch4.j ˙=joinK
hlatexch4.a A=AtomsK
Assertion hlatexch3N KHLPAQARAQRP˙Q=P˙RP˙Q=Q˙R

Proof

Step Hyp Ref Expression
1 hlatexch4.j ˙=joinK
2 hlatexch4.a A=AtomsK
3 simp1 KHLPAQARAQRP˙Q=P˙RKHL
4 simp21 KHLPAQARAQRP˙Q=P˙RPA
5 simp22 KHLPAQARAQRP˙Q=P˙RQA
6 eqid K=K
7 6 1 2 hlatlej2 KHLPAQAQKP˙Q
8 3 4 5 7 syl3anc KHLPAQARAQRP˙Q=P˙RQKP˙Q
9 simp23 KHLPAQARAQRP˙Q=P˙RRA
10 6 1 2 hlatlej2 KHLPARARKP˙R
11 3 4 9 10 syl3anc KHLPAQARAQRP˙Q=P˙RRKP˙R
12 simp3r KHLPAQARAQRP˙Q=P˙RP˙Q=P˙R
13 11 12 breqtrrd KHLPAQARAQRP˙Q=P˙RRKP˙Q
14 hllat KHLKLat
15 14 3ad2ant1 KHLPAQARAQRP˙Q=P˙RKLat
16 eqid BaseK=BaseK
17 16 2 atbase QAQBaseK
18 5 17 syl KHLPAQARAQRP˙Q=P˙RQBaseK
19 16 2 atbase RARBaseK
20 9 19 syl KHLPAQARAQRP˙Q=P˙RRBaseK
21 16 1 2 hlatjcl KHLPAQAP˙QBaseK
22 3 4 5 21 syl3anc KHLPAQARAQRP˙Q=P˙RP˙QBaseK
23 16 6 1 latjle12 KLatQBaseKRBaseKP˙QBaseKQKP˙QRKP˙QQ˙RKP˙Q
24 15 18 20 22 23 syl13anc KHLPAQARAQRP˙Q=P˙RQKP˙QRKP˙QQ˙RKP˙Q
25 8 13 24 mpbi2and KHLPAQARAQRP˙Q=P˙RQ˙RKP˙Q
26 simp3l KHLPAQARAQRP˙Q=P˙RQR
27 6 1 2 ps-1 KHLQARAQRPAQAQ˙RKP˙QQ˙R=P˙Q
28 3 5 9 26 4 5 27 syl132anc KHLPAQARAQRP˙Q=P˙RQ˙RKP˙QQ˙R=P˙Q
29 25 28 mpbid KHLPAQARAQRP˙Q=P˙RQ˙R=P˙Q
30 29 eqcomd KHLPAQARAQRP˙Q=P˙RP˙Q=Q˙R