Description: Lemma for hlcgreu . (Contributed by Thierry Arnoux, 9-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishlg.p | |
|
ishlg.i | |
||
ishlg.k | |
||
ishlg.a | |
||
ishlg.b | |
||
ishlg.c | |
||
hlln.1 | |
||
hltr.d | |
||
hlcgrex.m | |
||
hlcgrex.1 | |
||
hlcgrex.2 | |
||
hlcgreulem.x | |
||
hlcgreulem.y | |
||
hlcgreulem.1 | |
||
hlcgreulem.2 | |
||
hlcgreulem.3 | |
||
hlcgreulem.4 | |
||
Assertion | hlcgreulem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | |
|
2 | ishlg.i | |
|
3 | ishlg.k | |
|
4 | ishlg.a | |
|
5 | ishlg.b | |
|
6 | ishlg.c | |
|
7 | hlln.1 | |
|
8 | hltr.d | |
|
9 | hlcgrex.m | |
|
10 | hlcgrex.1 | |
|
11 | hlcgrex.2 | |
|
12 | hlcgreulem.x | |
|
13 | hlcgreulem.y | |
|
14 | hlcgreulem.1 | |
|
15 | hlcgreulem.2 | |
|
16 | hlcgreulem.3 | |
|
17 | hlcgreulem.4 | |
|
18 | 7 | ad2antrr | |
19 | 4 | ad2antrr | |
20 | 5 | ad2antrr | |
21 | 6 | ad2antrr | |
22 | simplr | |
|
23 | 12 | ad2antrr | |
24 | 13 | ad2antrr | |
25 | simprr | |
|
26 | 25 | necomd | |
27 | 8 | ad2antrr | |
28 | 1 2 3 12 8 4 7 14 | hlcomd | |
29 | 28 | ad2antrr | |
30 | simprl | |
|
31 | 1 2 3 27 23 22 18 19 29 30 | btwnhl | |
32 | 1 9 2 18 23 19 22 31 | tgbtwncom | |
33 | 1 2 3 13 8 4 7 15 | hlcomd | |
34 | 33 | ad2antrr | |
35 | 1 2 3 27 24 22 18 19 34 30 | btwnhl | |
36 | 1 9 2 18 24 19 22 35 | tgbtwncom | |
37 | 16 | ad2antrr | |
38 | 17 | ad2antrr | |
39 | 1 9 2 18 19 20 21 22 23 24 26 32 36 37 38 | tgsegconeq | |
40 | 1 | fvexi | |
41 | 40 | a1i | |
42 | 41 5 6 11 | nehash2 | |
43 | 1 9 2 7 8 4 42 | tgbtwndiff | |
44 | 39 43 | r19.29a | |