Metamath Proof Explorer


Theorem hlcgreulem

Description: Lemma for hlcgreu . (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses ishlg.p P=BaseG
ishlg.i I=ItvG
ishlg.k K=hl𝒢G
ishlg.a φAP
ishlg.b φBP
ishlg.c φCP
hlln.1 φG𝒢Tarski
hltr.d φDP
hlcgrex.m -˙=distG
hlcgrex.1 φDA
hlcgrex.2 φBC
hlcgreulem.x φXP
hlcgreulem.y φYP
hlcgreulem.1 φXKAD
hlcgreulem.2 φYKAD
hlcgreulem.3 φA-˙X=B-˙C
hlcgreulem.4 φA-˙Y=B-˙C
Assertion hlcgreulem φX=Y

Proof

Step Hyp Ref Expression
1 ishlg.p P=BaseG
2 ishlg.i I=ItvG
3 ishlg.k K=hl𝒢G
4 ishlg.a φAP
5 ishlg.b φBP
6 ishlg.c φCP
7 hlln.1 φG𝒢Tarski
8 hltr.d φDP
9 hlcgrex.m -˙=distG
10 hlcgrex.1 φDA
11 hlcgrex.2 φBC
12 hlcgreulem.x φXP
13 hlcgreulem.y φYP
14 hlcgreulem.1 φXKAD
15 hlcgreulem.2 φYKAD
16 hlcgreulem.3 φA-˙X=B-˙C
17 hlcgreulem.4 φA-˙Y=B-˙C
18 7 ad2antrr φyPADIyAyG𝒢Tarski
19 4 ad2antrr φyPADIyAyAP
20 5 ad2antrr φyPADIyAyBP
21 6 ad2antrr φyPADIyAyCP
22 simplr φyPADIyAyyP
23 12 ad2antrr φyPADIyAyXP
24 13 ad2antrr φyPADIyAyYP
25 simprr φyPADIyAyAy
26 25 necomd φyPADIyAyyA
27 8 ad2antrr φyPADIyAyDP
28 1 2 3 12 8 4 7 14 hlcomd φDKAX
29 28 ad2antrr φyPADIyAyDKAX
30 simprl φyPADIyAyADIy
31 1 2 3 27 23 22 18 19 29 30 btwnhl φyPADIyAyAXIy
32 1 9 2 18 23 19 22 31 tgbtwncom φyPADIyAyAyIX
33 1 2 3 13 8 4 7 15 hlcomd φDKAY
34 33 ad2antrr φyPADIyAyDKAY
35 1 2 3 27 24 22 18 19 34 30 btwnhl φyPADIyAyAYIy
36 1 9 2 18 24 19 22 35 tgbtwncom φyPADIyAyAyIY
37 16 ad2antrr φyPADIyAyA-˙X=B-˙C
38 17 ad2antrr φyPADIyAyA-˙Y=B-˙C
39 1 9 2 18 19 20 21 22 23 24 26 32 36 37 38 tgsegconeq φyPADIyAyX=Y
40 1 fvexi PV
41 40 a1i φPV
42 41 5 6 11 nehash2 φ2P
43 1 9 2 7 8 4 42 tgbtwndiff φyPADIyAy
44 39 43 r19.29a φX=Y