Metamath Proof Explorer


Theorem hltr

Description: The half-line relation is transitive. Theorem 6.7 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 23-Feb-2020)

Ref Expression
Hypotheses ishlg.p P=BaseG
ishlg.i I=ItvG
ishlg.k K=hl𝒢G
ishlg.a φAP
ishlg.b φBP
ishlg.c φCP
hlln.1 φG𝒢Tarski
hltr.d φDP
hltr.1 φAKDB
hltr.2 φBKDC
Assertion hltr φAKDC

Proof

Step Hyp Ref Expression
1 ishlg.p P=BaseG
2 ishlg.i I=ItvG
3 ishlg.k K=hl𝒢G
4 ishlg.a φAP
5 ishlg.b φBP
6 ishlg.c φCP
7 hlln.1 φG𝒢Tarski
8 hltr.d φDP
9 hltr.1 φAKDB
10 hltr.2 φBKDC
11 1 2 3 4 5 8 7 9 hlne1 φAD
12 1 2 3 5 6 8 7 10 hlne2 φCD
13 eqid distG=distG
14 7 ad2antrr φADIBBDICG𝒢Tarski
15 8 ad2antrr φADIBBDICDP
16 4 ad2antrr φADIBBDICAP
17 5 ad2antrr φADIBBDICBP
18 6 ad2antrr φADIBBDICCP
19 simplr φADIBBDICADIB
20 simpr φADIBBDICBDIC
21 1 13 2 14 15 16 17 18 19 20 tgbtwnexch φADIBBDICADIC
22 21 orcd φADIBBDICADICCDIA
23 7 ad2antrr φADIBCDIBG𝒢Tarski
24 8 ad2antrr φADIBCDIBDP
25 4 ad2antrr φADIBCDIBAP
26 6 ad2antrr φADIBCDIBCP
27 5 ad2antrr φADIBCDIBBP
28 simplr φADIBCDIBADIB
29 simpr φADIBCDIBCDIB
30 1 2 23 24 25 26 27 28 29 tgbtwnconn3 φADIBCDIBADICCDIA
31 1 2 3 5 6 8 7 ishlg φBKDCBDCDBDICCDIB
32 10 31 mpbid φBDCDBDICCDIB
33 32 simp3d φBDICCDIB
34 33 adantr φADIBBDICCDIB
35 22 30 34 mpjaodan φADIBADICCDIA
36 7 ad2antrr φBDIABDICG𝒢Tarski
37 8 ad2antrr φBDIABDICDP
38 5 ad2antrr φBDIABDICBP
39 4 ad2antrr φBDIABDICAP
40 6 ad2antrr φBDIABDICCP
41 32 simp1d φBD
42 41 necomd φDB
43 42 ad2antrr φBDIABDICDB
44 simplr φBDIABDICBDIA
45 simpr φBDIABDICBDIC
46 1 2 36 37 38 39 40 43 44 45 tgbtwnconn1 φBDIABDICADICCDIA
47 7 ad2antrr φBDIACDIBG𝒢Tarski
48 8 ad2antrr φBDIACDIBDP
49 6 ad2antrr φBDIACDIBCP
50 5 ad2antrr φBDIACDIBBP
51 4 ad2antrr φBDIACDIBAP
52 simpr φBDIACDIBCDIB
53 simplr φBDIACDIBBDIA
54 1 13 2 47 48 49 50 51 52 53 tgbtwnexch φBDIACDIBCDIA
55 54 olcd φBDIACDIBADICCDIA
56 33 adantr φBDIABDICCDIB
57 46 55 56 mpjaodan φBDIAADICCDIA
58 1 2 3 4 5 8 7 ishlg φAKDBADBDADIBBDIA
59 9 58 mpbid φADBDADIBBDIA
60 59 simp3d φADIBBDIA
61 35 57 60 mpjaodan φADICCDIA
62 1 2 3 4 6 8 7 ishlg φAKDCADCDADICCDIA
63 11 12 61 62 mpbir3and φAKDC