| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|
| 2 |
|
ishlg.i |
|
| 3 |
|
ishlg.k |
|
| 4 |
|
ishlg.a |
|
| 5 |
|
ishlg.b |
|
| 6 |
|
ishlg.c |
|
| 7 |
|
hlln.1 |
|
| 8 |
|
hltr.d |
|
| 9 |
|
hltr.1 |
|
| 10 |
|
hltr.2 |
|
| 11 |
1 2 3 4 5 8 7 9
|
hlne1 |
|
| 12 |
1 2 3 5 6 8 7 10
|
hlne2 |
|
| 13 |
|
eqid |
|
| 14 |
7
|
ad2antrr |
|
| 15 |
8
|
ad2antrr |
|
| 16 |
4
|
ad2antrr |
|
| 17 |
5
|
ad2antrr |
|
| 18 |
6
|
ad2antrr |
|
| 19 |
|
simplr |
|
| 20 |
|
simpr |
|
| 21 |
1 13 2 14 15 16 17 18 19 20
|
tgbtwnexch |
|
| 22 |
21
|
orcd |
|
| 23 |
7
|
ad2antrr |
|
| 24 |
8
|
ad2antrr |
|
| 25 |
4
|
ad2antrr |
|
| 26 |
6
|
ad2antrr |
|
| 27 |
5
|
ad2antrr |
|
| 28 |
|
simplr |
|
| 29 |
|
simpr |
|
| 30 |
1 2 23 24 25 26 27 28 29
|
tgbtwnconn3 |
|
| 31 |
1 2 3 5 6 8 7
|
ishlg |
|
| 32 |
10 31
|
mpbid |
|
| 33 |
32
|
simp3d |
|
| 34 |
33
|
adantr |
|
| 35 |
22 30 34
|
mpjaodan |
|
| 36 |
7
|
ad2antrr |
|
| 37 |
8
|
ad2antrr |
|
| 38 |
5
|
ad2antrr |
|
| 39 |
4
|
ad2antrr |
|
| 40 |
6
|
ad2antrr |
|
| 41 |
32
|
simp1d |
|
| 42 |
41
|
necomd |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
|
simplr |
|
| 45 |
|
simpr |
|
| 46 |
1 2 36 37 38 39 40 43 44 45
|
tgbtwnconn1 |
|
| 47 |
7
|
ad2antrr |
|
| 48 |
8
|
ad2antrr |
|
| 49 |
6
|
ad2antrr |
|
| 50 |
5
|
ad2antrr |
|
| 51 |
4
|
ad2antrr |
|
| 52 |
|
simpr |
|
| 53 |
|
simplr |
|
| 54 |
1 13 2 47 48 49 50 51 52 53
|
tgbtwnexch |
|
| 55 |
54
|
olcd |
|
| 56 |
33
|
adantr |
|
| 57 |
46 55 56
|
mpjaodan |
|
| 58 |
1 2 3 4 5 8 7
|
ishlg |
|
| 59 |
9 58
|
mpbid |
|
| 60 |
59
|
simp3d |
|
| 61 |
35 57 60
|
mpjaodan |
|
| 62 |
1 2 3 4 6 8 7
|
ishlg |
|
| 63 |
11 12 61 62
|
mpbir3and |
|