| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  | 
						
							| 2 |  | rneq |  | 
						
							| 3 | 2 | fveq2d |  | 
						
							| 4 | 1 3 | eqeq12d |  | 
						
							| 5 |  | eleq1 |  | 
						
							| 6 | 1 1 | coeq12d |  | 
						
							| 7 | 6 1 | eqeq12d |  | 
						
							| 8 | 5 7 | anbi12d |  | 
						
							| 9 |  | eleq1 |  | 
						
							| 10 |  | id |  | 
						
							| 11 | 10 10 | coeq12d |  | 
						
							| 12 | 11 10 | eqeq12d |  | 
						
							| 13 | 9 12 | anbi12d |  | 
						
							| 14 |  | idhmop |  | 
						
							| 15 |  | hoif |  | 
						
							| 16 |  | f1of |  | 
						
							| 17 | 15 16 | ax-mp |  | 
						
							| 18 | 17 | hoid1i |  | 
						
							| 19 | 14 18 | pm3.2i |  | 
						
							| 20 | 8 13 19 | elimhyp |  | 
						
							| 21 | 20 | simpli |  | 
						
							| 22 | 20 | simpri |  | 
						
							| 23 | 21 22 | hmopidmpji |  | 
						
							| 24 | 4 23 | dedth |  |