Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of Halmos p. 44. (Contributed by NM, 22-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hmopidmpj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | rneq | |
|
3 | 2 | fveq2d | |
4 | 1 3 | eqeq12d | |
5 | eleq1 | |
|
6 | 1 1 | coeq12d | |
7 | 6 1 | eqeq12d | |
8 | 5 7 | anbi12d | |
9 | eleq1 | |
|
10 | id | |
|
11 | 10 10 | coeq12d | |
12 | 11 10 | eqeq12d | |
13 | 9 12 | anbi12d | |
14 | idhmop | |
|
15 | hoif | |
|
16 | f1of | |
|
17 | 15 16 | ax-mp | |
18 | 17 | hoid1i | |
19 | 14 18 | pm3.2i | |
20 | 8 13 19 | elimhyp | |
21 | 20 | simpli | |
22 | 20 | simpri | |
23 | 21 22 | hmopidmpji | |
24 | 4 23 | dedth | |