Metamath Proof Explorer


Theorem hsphoif

Description: H is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hsphoif.h H = x a X j X if j Y a j if a j x a j x
hsphoif.a φ A
hsphoif.x φ X V
hsphoif.b φ B : X
Assertion hsphoif φ H A B : X

Proof

Step Hyp Ref Expression
1 hsphoif.h H = x a X j X if j Y a j if a j x a j x
2 hsphoif.a φ A
3 hsphoif.x φ X V
4 hsphoif.b φ B : X
5 4 ffvelrnda φ j X B j
6 2 adantr φ j X A
7 5 6 ifcld φ j X if B j A B j A
8 5 7 ifcld φ j X if j Y B j if B j A B j A
9 eqid j X if j Y B j if B j A B j A = j X if j Y B j if B j A B j A
10 8 9 fmptd φ j X if j Y B j if B j A B j A : X
11 breq2 x = A a j x a j A
12 id x = A x = A
13 11 12 ifbieq2d x = A if a j x a j x = if a j A a j A
14 13 ifeq2d x = A if j Y a j if a j x a j x = if j Y a j if a j A a j A
15 14 mpteq2dv x = A j X if j Y a j if a j x a j x = j X if j Y a j if a j A a j A
16 15 mpteq2dv x = A a X j X if j Y a j if a j x a j x = a X j X if j Y a j if a j A a j A
17 ovex X V
18 17 mptex a X j X if j Y a j if a j A a j A V
19 18 a1i φ a X j X if j Y a j if a j A a j A V
20 1 16 2 19 fvmptd3 φ H A = a X j X if j Y a j if a j A a j A
21 fveq1 a = B a j = B j
22 21 breq1d a = B a j A B j A
23 22 21 ifbieq1d a = B if a j A a j A = if B j A B j A
24 21 23 ifeq12d a = B if j Y a j if a j A a j A = if j Y B j if B j A B j A
25 24 mpteq2dv a = B j X if j Y a j if a j A a j A = j X if j Y B j if B j A B j A
26 25 adantl φ a = B j X if j Y a j if a j A a j A = j X if j Y B j if B j A B j A
27 reex V
28 27 a1i φ V
29 28 3 jca φ V X V
30 elmapg V X V B X B : X
31 29 30 syl φ B X B : X
32 4 31 mpbird φ B X
33 mptexg X V j X if j Y B j if B j A B j A V
34 3 33 syl φ j X if j Y B j if B j A B j A V
35 20 26 32 34 fvmptd φ H A B = j X if j Y B j if B j A B j A
36 35 feq1d φ H A B : X j X if j Y B j if B j A B j A : X
37 10 36 mpbird φ H A B : X