Metamath Proof Explorer


Theorem hsphoif

Description: H is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hsphoif.h H=xaXjXifjYajifajxajx
hsphoif.a φA
hsphoif.x φXV
hsphoif.b φB:X
Assertion hsphoif φHAB:X

Proof

Step Hyp Ref Expression
1 hsphoif.h H=xaXjXifjYajifajxajx
2 hsphoif.a φA
3 hsphoif.x φXV
4 hsphoif.b φB:X
5 4 ffvelcdmda φjXBj
6 2 adantr φjXA
7 5 6 ifcld φjXifBjABjA
8 5 7 ifcld φjXifjYBjifBjABjA
9 eqid jXifjYBjifBjABjA=jXifjYBjifBjABjA
10 8 9 fmptd φjXifjYBjifBjABjA:X
11 breq2 x=AajxajA
12 id x=Ax=A
13 11 12 ifbieq2d x=Aifajxajx=ifajAajA
14 13 ifeq2d x=AifjYajifajxajx=ifjYajifajAajA
15 14 mpteq2dv x=AjXifjYajifajxajx=jXifjYajifajAajA
16 15 mpteq2dv x=AaXjXifjYajifajxajx=aXjXifjYajifajAajA
17 ovex XV
18 17 mptex aXjXifjYajifajAajAV
19 18 a1i φaXjXifjYajifajAajAV
20 1 16 2 19 fvmptd3 φHA=aXjXifjYajifajAajA
21 fveq1 a=Baj=Bj
22 21 breq1d a=BajABjA
23 22 21 ifbieq1d a=BifajAajA=ifBjABjA
24 21 23 ifeq12d a=BifjYajifajAajA=ifjYBjifBjABjA
25 24 mpteq2dv a=BjXifjYajifajAajA=jXifjYBjifBjABjA
26 25 adantl φa=BjXifjYajifajAajA=jXifjYBjifBjABjA
27 reex V
28 27 a1i φV
29 28 3 jca φVXV
30 elmapg VXVBXB:X
31 29 30 syl φBXB:X
32 4 31 mpbird φBX
33 mptexg XVjXifjYBjifBjABjAV
34 3 33 syl φjXifjYBjifBjABjAV
35 20 26 32 34 fvmptd φHAB=jXifjYBjifBjABjA
36 35 feq1d φHAB:XjXifjYBjifBjABjA:X
37 10 36 mpbird φHAB:X