Metamath Proof Explorer


Theorem hstnmoc

Description: Sum of norms of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstnmoc SCHStatesACnormSA2+normSA2=1

Proof

Step Hyp Ref Expression
1 hstoc SCHStatesACSA+SA=S
2 1 fveq2d SCHStatesACnormSA+SA=normS
3 2 oveq1d SCHStatesACnormSA+SA2=normS2
4 hstcl SCHStatesACSA
5 choccl ACAC
6 hstcl SCHStatesACSA
7 5 6 sylan2 SCHStatesACSA
8 4 7 jca SCHStatesACSASA
9 5 adantl SCHStatesACAC
10 chsh ACAS
11 shococss ASAA
12 10 11 syl ACAA
13 12 adantl SCHStatesACAA
14 9 13 jca SCHStatesACACAA
15 hstorth SCHStatesACACAASAihSA=0
16 14 15 mpdan SCHStatesACSAihSA=0
17 normpyth SASASAihSA=0normSA+SA2=normSA2+normSA2
18 8 16 17 sylc SCHStatesACnormSA+SA2=normSA2+normSA2
19 hst1a SCHStatesnormS=1
20 19 oveq1d SCHStatesnormS2=12
21 sq1 12=1
22 20 21 eqtrdi SCHStatesnormS2=1
23 22 adantr SCHStatesACnormS2=1
24 3 18 23 3eqtr3d SCHStatesACnormSA2+normSA2=1