Description: A Hilbert-space-valued state orthogonal to the state of the lattice one is zero. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hstoh | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstcl | |
|
2 | choccl | |
|
3 | hstcl | |
|
4 | 2 3 | sylan2 | |
5 | his7 | |
|
6 | 1 1 4 5 | syl3anc | |
7 | normsq | |
|
8 | 1 7 | syl | |
9 | 8 | eqcomd | |
10 | ococ | |
|
11 | eqimss2 | |
|
12 | 10 11 | syl | |
13 | 2 12 | jca | |
14 | 13 | adantl | |
15 | hstorth | |
|
16 | 14 15 | mpdan | |
17 | 9 16 | oveq12d | |
18 | normcl | |
|
19 | 1 18 | syl | |
20 | 19 | resqcld | |
21 | 20 | recnd | |
22 | 21 | addridd | |
23 | 6 17 22 | 3eqtrrd | |
24 | hstoc | |
|
25 | 24 | oveq2d | |
26 | 23 25 | eqtrd | |
27 | id | |
|
28 | 26 27 | sylan9eq | |
29 | 28 | 3impa | |
30 | 19 | recnd | |
31 | sqeq0 | |
|
32 | 30 31 | syl | |
33 | 32 | 3adant3 | |
34 | 29 33 | mpbid | |
35 | hst0h | |
|
36 | 35 | 3adant3 | |
37 | 34 36 | mpbid | |