Metamath Proof Explorer


Theorem hstoh

Description: A Hilbert-space-valued state orthogonal to the state of the lattice one is zero. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstoh SCHStatesACSAihS=0SA=0

Proof

Step Hyp Ref Expression
1 hstcl SCHStatesACSA
2 choccl ACAC
3 hstcl SCHStatesACSA
4 2 3 sylan2 SCHStatesACSA
5 his7 SASASASAihSA+SA=SAihSA+SAihSA
6 1 1 4 5 syl3anc SCHStatesACSAihSA+SA=SAihSA+SAihSA
7 normsq SAnormSA2=SAihSA
8 1 7 syl SCHStatesACnormSA2=SAihSA
9 8 eqcomd SCHStatesACSAihSA=normSA2
10 ococ ACA=A
11 eqimss2 A=AAA
12 10 11 syl ACAA
13 2 12 jca ACACAA
14 13 adantl SCHStatesACACAA
15 hstorth SCHStatesACACAASAihSA=0
16 14 15 mpdan SCHStatesACSAihSA=0
17 9 16 oveq12d SCHStatesACSAihSA+SAihSA=normSA2+0
18 normcl SAnormSA
19 1 18 syl SCHStatesACnormSA
20 19 resqcld SCHStatesACnormSA2
21 20 recnd SCHStatesACnormSA2
22 21 addridd SCHStatesACnormSA2+0=normSA2
23 6 17 22 3eqtrrd SCHStatesACnormSA2=SAihSA+SA
24 hstoc SCHStatesACSA+SA=S
25 24 oveq2d SCHStatesACSAihSA+SA=SAihS
26 23 25 eqtrd SCHStatesACnormSA2=SAihS
27 id SAihS=0SAihS=0
28 26 27 sylan9eq SCHStatesACSAihS=0normSA2=0
29 28 3impa SCHStatesACSAihS=0normSA2=0
30 19 recnd SCHStatesACnormSA
31 sqeq0 normSAnormSA2=0normSA=0
32 30 31 syl SCHStatesACnormSA2=0normSA=0
33 32 3adant3 SCHStatesACSAihS=0normSA2=0normSA=0
34 29 33 mpbid SCHStatesACSAihS=0normSA=0
35 hst0h SCHStatesACnormSA=0SA=0
36 35 3adant3 SCHStatesACSAihS=0normSA=0SA=0
37 34 36 mpbid SCHStatesACSAihS=0SA=0