| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvaddcl |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | hvaddcl |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 |  | hvaddcl |  | 
						
							| 6 | 5 | ancoms |  | 
						
							| 7 | 6 | ad2ant2lr |  | 
						
							| 8 |  | hvsubcan2 |  | 
						
							| 9 | 2 4 7 8 | syl3anc |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 10 | anim2i |  | 
						
							| 12 | 11 | ancoms |  | 
						
							| 13 |  | hvsub4 |  | 
						
							| 14 | 12 13 | syldan |  | 
						
							| 15 |  | hvsubid |  | 
						
							| 16 | 15 | ad2antlr |  | 
						
							| 17 | 16 | oveq2d |  | 
						
							| 18 |  | hvsubcl |  | 
						
							| 19 |  | ax-hvaddid |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 | 20 | adantlr |  | 
						
							| 22 | 14 17 21 | 3eqtrd |  | 
						
							| 23 | 22 | adantrr |  | 
						
							| 24 |  | simpl |  | 
						
							| 25 | 24 | anim1i |  | 
						
							| 26 |  | hvsub4 |  | 
						
							| 27 | 25 26 | syldan |  | 
						
							| 28 |  | hvsubid |  | 
						
							| 29 | 28 | ad2antrr |  | 
						
							| 30 | 29 | oveq1d |  | 
						
							| 31 |  | hvsubcl |  | 
						
							| 32 |  | hvaddlid |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 33 | adantll |  | 
						
							| 35 | 27 30 34 | 3eqtrd |  | 
						
							| 36 | 35 | ancoms |  | 
						
							| 37 | 36 | adantll |  | 
						
							| 38 | 23 37 | eqeq12d |  | 
						
							| 39 | 9 38 | bitr3d |  |