Metamath Proof Explorer


Theorem hvmapval

Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses hvmapval.h H=LHypK
hvmapval.u U=DVecHKW
hvmapval.o O=ocHKW
hvmapval.v V=BaseU
hvmapval.p +˙=+U
hvmapval.t ·˙=U
hvmapval.z 0˙=0U
hvmapval.s S=ScalarU
hvmapval.r R=BaseS
hvmapval.m M=HVMapKW
hvmapval.k φKAWH
hvmapval.x φXV0˙
Assertion hvmapval φMX=vVιjR|tOXv=t+˙j·˙X

Proof

Step Hyp Ref Expression
1 hvmapval.h H=LHypK
2 hvmapval.u U=DVecHKW
3 hvmapval.o O=ocHKW
4 hvmapval.v V=BaseU
5 hvmapval.p +˙=+U
6 hvmapval.t ·˙=U
7 hvmapval.z 0˙=0U
8 hvmapval.s S=ScalarU
9 hvmapval.r R=BaseS
10 hvmapval.m M=HVMapKW
11 hvmapval.k φKAWH
12 hvmapval.x φXV0˙
13 1 2 3 4 5 6 7 8 9 10 11 hvmapfval φM=xV0˙vVιjR|tOxv=t+˙j·˙x
14 13 fveq1d φMX=xV0˙vVιjR|tOxv=t+˙j·˙xX
15 4 fvexi VV
16 15 mptex vVιjR|tOXv=t+˙j·˙XV
17 sneq x=Xx=X
18 17 fveq2d x=XOx=OX
19 oveq2 x=Xj·˙x=j·˙X
20 19 oveq2d x=Xt+˙j·˙x=t+˙j·˙X
21 20 eqeq2d x=Xv=t+˙j·˙xv=t+˙j·˙X
22 18 21 rexeqbidv x=XtOxv=t+˙j·˙xtOXv=t+˙j·˙X
23 22 riotabidv x=XιjR|tOxv=t+˙j·˙x=ιjR|tOXv=t+˙j·˙X
24 23 mpteq2dv x=XvVιjR|tOxv=t+˙j·˙x=vVιjR|tOXv=t+˙j·˙X
25 eqid xV0˙vVιjR|tOxv=t+˙j·˙x=xV0˙vVιjR|tOxv=t+˙j·˙x
26 24 25 fvmptg XV0˙vVιjR|tOXv=t+˙j·˙XVxV0˙vVιjR|tOxv=t+˙j·˙xX=vVιjR|tOXv=t+˙j·˙X
27 12 16 26 sylancl φxV0˙vVιjR|tOxv=t+˙j·˙xX=vVιjR|tOXv=t+˙j·˙X
28 14 27 eqtrd φMX=vVιjR|tOXv=t+˙j·˙X