Metamath Proof Explorer


Theorem hvmapvalvalN

Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hvmapval.h H=LHypK
hvmapval.u U=DVecHKW
hvmapval.o O=ocHKW
hvmapval.v V=BaseU
hvmapval.p +˙=+U
hvmapval.t ·˙=U
hvmapval.z 0˙=0U
hvmapval.s S=ScalarU
hvmapval.r R=BaseS
hvmapval.m M=HVMapKW
hvmapval.k φKAWH
hvmapval.x φXV0˙
hvmapval.y φYV
Assertion hvmapvalvalN φMXY=ιjR|tOXY=t+˙j·˙X

Proof

Step Hyp Ref Expression
1 hvmapval.h H=LHypK
2 hvmapval.u U=DVecHKW
3 hvmapval.o O=ocHKW
4 hvmapval.v V=BaseU
5 hvmapval.p +˙=+U
6 hvmapval.t ·˙=U
7 hvmapval.z 0˙=0U
8 hvmapval.s S=ScalarU
9 hvmapval.r R=BaseS
10 hvmapval.m M=HVMapKW
11 hvmapval.k φKAWH
12 hvmapval.x φXV0˙
13 hvmapval.y φYV
14 1 2 3 4 5 6 7 8 9 10 11 12 hvmapval φMX=yVιjR|tOXy=t+˙j·˙X
15 14 fveq1d φMXY=yVιjR|tOXy=t+˙j·˙XY
16 riotaex ιjR|tOXY=t+˙j·˙XV
17 eqeq1 y=Yy=t+˙j·˙XY=t+˙j·˙X
18 17 rexbidv y=YtOXy=t+˙j·˙XtOXY=t+˙j·˙X
19 18 riotabidv y=YιjR|tOXy=t+˙j·˙X=ιjR|tOXY=t+˙j·˙X
20 eqid yVιjR|tOXy=t+˙j·˙X=yVιjR|tOXy=t+˙j·˙X
21 19 20 fvmptg YVιjR|tOXY=t+˙j·˙XVyVιjR|tOXy=t+˙j·˙XY=ιjR|tOXY=t+˙j·˙X
22 13 16 21 sylancl φyVιjR|tOXy=t+˙j·˙XY=ιjR|tOXY=t+˙j·˙X
23 15 22 eqtrd φMXY=ιjR|tOXY=t+˙j·˙X