Metamath Proof Explorer


Theorem hvmul0or

Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvmul0or ABAB=0A=0B=0

Proof

Step Hyp Ref Expression
1 df-ne A0¬A=0
2 oveq2 AB=01AAB=1A0
3 2 ad2antlr ABAB=0A01AAB=1A0
4 recid2 AA01AA=1
5 4 oveq1d AA01AAB=1B
6 5 adantlr ABA01AAB=1B
7 reccl AA01A
8 7 adantlr ABA01A
9 simpll ABA0A
10 simplr ABA0B
11 ax-hvmulass 1AAB1AAB=1AAB
12 8 9 10 11 syl3anc ABA01AAB=1AAB
13 ax-hvmulid B1B=B
14 13 ad2antlr ABA01B=B
15 6 12 14 3eqtr3d ABA01AAB=B
16 15 adantlr ABAB=0A01AAB=B
17 hvmul0 1A1A0=0
18 7 17 syl AA01A0=0
19 18 adantlr ABA01A0=0
20 19 adantlr ABAB=0A01A0=0
21 3 16 20 3eqtr3d ABAB=0A0B=0
22 21 ex ABAB=0A0B=0
23 1 22 biimtrrid ABAB=0¬A=0B=0
24 23 orrd ABAB=0A=0B=0
25 24 ex ABAB=0A=0B=0
26 ax-hvmul0 B0B=0
27 oveq1 A=0AB=0B
28 27 eqeq1d A=0AB=00B=0
29 26 28 syl5ibrcom BA=0AB=0
30 29 adantl ABA=0AB=0
31 hvmul0 AA0=0
32 oveq2 B=0AB=A0
33 32 eqeq1d B=0AB=0A0=0
34 31 33 syl5ibrcom AB=0AB=0
35 34 adantr ABB=0AB=0
36 30 35 jaod ABA=0B=0AB=0
37 25 36 impbid ABAB=0A=0B=0