Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvmul0or | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | |
|
2 | oveq2 | |
|
3 | 2 | ad2antlr | |
4 | recid2 | |
|
5 | 4 | oveq1d | |
6 | 5 | adantlr | |
7 | reccl | |
|
8 | 7 | adantlr | |
9 | simpll | |
|
10 | simplr | |
|
11 | ax-hvmulass | |
|
12 | 8 9 10 11 | syl3anc | |
13 | ax-hvmulid | |
|
14 | 13 | ad2antlr | |
15 | 6 12 14 | 3eqtr3d | |
16 | 15 | adantlr | |
17 | hvmul0 | |
|
18 | 7 17 | syl | |
19 | 18 | adantlr | |
20 | 19 | adantlr | |
21 | 3 16 20 | 3eqtr3d | |
22 | 21 | ex | |
23 | 1 22 | biimtrrid | |
24 | 23 | orrd | |
25 | 24 | ex | |
26 | ax-hvmul0 | |
|
27 | oveq1 | |
|
28 | 27 | eqeq1d | |
29 | 26 28 | syl5ibrcom | |
30 | 29 | adantl | |
31 | hvmul0 | |
|
32 | oveq2 | |
|
33 | 32 | eqeq1d | |
34 | 31 33 | syl5ibrcom | |
35 | 34 | adantr | |
36 | 30 35 | jaod | |
37 | 25 36 | impbid | |