| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ne |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 2 | ad2antlr |  | 
						
							| 4 |  | recid2 |  | 
						
							| 5 | 4 | oveq1d |  | 
						
							| 6 | 5 | adantlr |  | 
						
							| 7 |  | reccl |  | 
						
							| 8 | 7 | adantlr |  | 
						
							| 9 |  | simpll |  | 
						
							| 10 |  | simplr |  | 
						
							| 11 |  | ax-hvmulass |  | 
						
							| 12 | 8 9 10 11 | syl3anc |  | 
						
							| 13 |  | ax-hvmulid |  | 
						
							| 14 | 13 | ad2antlr |  | 
						
							| 15 | 6 12 14 | 3eqtr3d |  | 
						
							| 16 | 15 | adantlr |  | 
						
							| 17 |  | hvmul0 |  | 
						
							| 18 | 7 17 | syl |  | 
						
							| 19 | 18 | adantlr |  | 
						
							| 20 | 19 | adantlr |  | 
						
							| 21 | 3 16 20 | 3eqtr3d |  | 
						
							| 22 | 21 | ex |  | 
						
							| 23 | 1 22 | biimtrrid |  | 
						
							| 24 | 23 | orrd |  | 
						
							| 25 | 24 | ex |  | 
						
							| 26 |  | ax-hvmul0 |  | 
						
							| 27 |  | oveq1 |  | 
						
							| 28 | 27 | eqeq1d |  | 
						
							| 29 | 26 28 | syl5ibrcom |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 |  | hvmul0 |  | 
						
							| 32 |  | oveq2 |  | 
						
							| 33 | 32 | eqeq1d |  | 
						
							| 34 | 31 33 | syl5ibrcom |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 30 35 | jaod |  | 
						
							| 37 | 25 36 | impbid |  |