Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | icccntr.1 | |
|
icccntr.2 | |
||
Assertion | icccntr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icccntr.1 | |
|
2 | icccntr.2 | |
|
3 | simpl | |
|
4 | rerpdivcl | |
|
5 | 3 4 | 2thd | |
6 | 5 | adantl | |
7 | elrp | |
|
8 | lediv1 | |
|
9 | 7 8 | syl3an3b | |
10 | 9 | 3expb | |
11 | 10 | adantlr | |
12 | 1 | breq1i | |
13 | 11 12 | bitrdi | |
14 | lediv1 | |
|
15 | 7 14 | syl3an3b | |
16 | 15 | 3expb | |
17 | 16 | an12s | |
18 | 17 | adantll | |
19 | 2 | breq2i | |
20 | 18 19 | bitrdi | |
21 | 6 13 20 | 3anbi123d | |
22 | elicc2 | |
|
23 | 22 | adantr | |
24 | rerpdivcl | |
|
25 | 1 24 | eqeltrrid | |
26 | rerpdivcl | |
|
27 | 2 26 | eqeltrrid | |
28 | elicc2 | |
|
29 | 25 27 28 | syl2an | |
30 | 29 | anandirs | |
31 | 30 | adantrl | |
32 | 21 23 31 | 3bitr4d | |