Metamath Proof Explorer


Theorem icccntr

Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses icccntr.1 AR=C
icccntr.2 BR=D
Assertion icccntr ABXR+XABXRCD

Proof

Step Hyp Ref Expression
1 icccntr.1 AR=C
2 icccntr.2 BR=D
3 simpl XR+X
4 rerpdivcl XR+XR
5 3 4 2thd XR+XXR
6 5 adantl ABXR+XXR
7 elrp R+R0<R
8 lediv1 AXR0<RAXARXR
9 7 8 syl3an3b AXR+AXARXR
10 9 3expb AXR+AXARXR
11 10 adantlr ABXR+AXARXR
12 1 breq1i ARXRCXR
13 11 12 bitrdi ABXR+AXCXR
14 lediv1 XBR0<RXBXRBR
15 7 14 syl3an3b XBR+XBXRBR
16 15 3expb XBR+XBXRBR
17 16 an12s BXR+XBXRBR
18 17 adantll ABXR+XBXRBR
19 2 breq2i XRBRXRD
20 18 19 bitrdi ABXR+XBXRD
21 6 13 20 3anbi123d ABXR+XAXXBXRCXRXRD
22 elicc2 ABXABXAXXB
23 22 adantr ABXR+XABXAXXB
24 rerpdivcl AR+AR
25 1 24 eqeltrrid AR+C
26 rerpdivcl BR+BR
27 2 26 eqeltrrid BR+D
28 elicc2 CDXRCDXRCXRXRD
29 25 27 28 syl2an AR+BR+XRCDXRCXRXRD
30 29 anandirs ABR+XRCDXRCXRXRD
31 30 adantrl ABXR+XRCDXRCXRXRD
32 21 23 31 3bitr4d ABXR+XABXRCD