Metamath Proof Explorer


Theorem iccshftr

Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccshftr.1 A+R=C
iccshftr.2 B+R=D
Assertion iccshftr ABXRXABX+RCD

Proof

Step Hyp Ref Expression
1 iccshftr.1 A+R=C
2 iccshftr.2 B+R=D
3 simpl XRX
4 readdcl XRX+R
5 3 4 2thd XRXX+R
6 5 adantl ABXRXX+R
7 leadd1 AXRAXA+RX+R
8 7 3expb AXRAXA+RX+R
9 8 adantlr ABXRAXA+RX+R
10 1 breq1i A+RX+RCX+R
11 9 10 bitrdi ABXRAXCX+R
12 leadd1 XBRXBX+RB+R
13 12 3expb XBRXBX+RB+R
14 13 an12s BXRXBX+RB+R
15 14 adantll ABXRXBX+RB+R
16 2 breq2i X+RB+RX+RD
17 15 16 bitrdi ABXRXBX+RD
18 6 11 17 3anbi123d ABXRXAXXBX+RCX+RX+RD
19 elicc2 ABXABXAXXB
20 19 adantr ABXRXABXAXXB
21 readdcl ARA+R
22 1 21 eqeltrrid ARC
23 readdcl BRB+R
24 2 23 eqeltrrid BRD
25 elicc2 CDX+RCDX+RCX+RX+RD
26 22 24 25 syl2an ARBRX+RCDX+RCX+RX+RD
27 26 anandirs ABRX+RCDX+RCX+RX+RD
28 27 adantrl ABXRX+RCDX+RCX+RX+RD
29 18 20 28 3bitr4d ABXRXABX+RCD