Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccshftr.1 | |
|
iccshftr.2 | |
||
Assertion | iccshftr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccshftr.1 | |
|
2 | iccshftr.2 | |
|
3 | simpl | |
|
4 | readdcl | |
|
5 | 3 4 | 2thd | |
6 | 5 | adantl | |
7 | leadd1 | |
|
8 | 7 | 3expb | |
9 | 8 | adantlr | |
10 | 1 | breq1i | |
11 | 9 10 | bitrdi | |
12 | leadd1 | |
|
13 | 12 | 3expb | |
14 | 13 | an12s | |
15 | 14 | adantll | |
16 | 2 | breq2i | |
17 | 15 16 | bitrdi | |
18 | 6 11 17 | 3anbi123d | |
19 | elicc2 | |
|
20 | 19 | adantr | |
21 | readdcl | |
|
22 | 1 21 | eqeltrrid | |
23 | readdcl | |
|
24 | 2 23 | eqeltrrid | |
25 | elicc2 | |
|
26 | 22 24 25 | syl2an | |
27 | 26 | anandirs | |
28 | 27 | adantrl | |
29 | 18 20 28 | 3bitr4d | |