Description: The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isbasisrelowl.1 | |
|
Assertion | icoreclin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasisrelowl.1 | |
|
2 | 1 | icoreelrnab | |
3 | 1 | icoreelrnab | |
4 | 1 | isbasisrelowllem1 | |
5 | 4 | ex | |
6 | 1 | isbasisrelowllem2 | |
7 | 6 | ex | |
8 | 5 7 | jaod | |
9 | incom | |
|
10 | 1 | isbasisrelowllem2 | |
11 | 9 10 | eqeltrrid | |
12 | 11 | ancom1s | |
13 | 12 | ex | |
14 | 1 | isbasisrelowllem1 | |
15 | 9 14 | eqeltrrid | |
16 | 15 | ancom1s | |
17 | 16 | ex | |
18 | 13 17 | jaod | |
19 | 3simpa | |
|
20 | 3simpa | |
|
21 | letric | |
|
22 | letric | |
|
23 | 21 22 | anim12i | |
24 | anddi | |
|
25 | 23 24 | sylib | |
26 | 25 | an4s | |
27 | 19 20 26 | syl2an | |
28 | 8 18 27 | mpjaod | |
29 | 28 | ex | |
30 | 29 | 3expia | |
31 | 30 | rexlimivv | |
32 | 3 31 | sylbi | |
33 | 32 | com12 | |
34 | 33 | 3expia | |
35 | 34 | rexlimivv | |
36 | 2 35 | sylbi | |
37 | 36 | impcom | |