Metamath Proof Explorer


Theorem icoreclin

Description: The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis isbasisrelowl.1 I=.2
Assertion icoreclin xIyIxyI

Proof

Step Hyp Ref Expression
1 isbasisrelowl.1 I=.2
2 1 icoreelrnab yIcdy=z|czz<d
3 1 icoreelrnab xIabx=z|azz<b
4 1 isbasisrelowllem1 abx=z|azz<bcdy=z|czz<dacbdxyI
5 4 ex abx=z|azz<bcdy=z|czz<dacbdxyI
6 1 isbasisrelowllem2 abx=z|azz<bcdy=z|czz<dacdbxyI
7 6 ex abx=z|azz<bcdy=z|czz<dacdbxyI
8 5 7 jaod abx=z|azz<bcdy=z|czz<dacbdacdbxyI
9 incom yx=xy
10 1 isbasisrelowllem2 cdy=z|czz<dabx=z|azz<bcabdyxI
11 9 10 eqeltrrid cdy=z|czz<dabx=z|azz<bcabdxyI
12 11 ancom1s abx=z|azz<bcdy=z|czz<dcabdxyI
13 12 ex abx=z|azz<bcdy=z|czz<dcabdxyI
14 1 isbasisrelowllem1 cdy=z|czz<dabx=z|azz<bcadbyxI
15 9 14 eqeltrrid cdy=z|czz<dabx=z|azz<bcadbxyI
16 15 ancom1s abx=z|azz<bcdy=z|czz<dcadbxyI
17 16 ex abx=z|azz<bcdy=z|czz<dcadbxyI
18 13 17 jaod abx=z|azz<bcdy=z|czz<dcabdcadbxyI
19 3simpa abx=z|azz<bab
20 3simpa cdy=z|czz<dcd
21 letric acacca
22 letric bdbddb
23 21 22 anim12i acbdaccabddb
24 anddi accabddbacbdacdbcabdcadb
25 23 24 sylib acbdacbdacdbcabdcadb
26 25 an4s abcdacbdacdbcabdcadb
27 19 20 26 syl2an abx=z|azz<bcdy=z|czz<dacbdacdbcabdcadb
28 8 18 27 mpjaod abx=z|azz<bcdy=z|czz<dxyI
29 28 ex abx=z|azz<bcdy=z|czz<dxyI
30 29 3expia abx=z|azz<bcdy=z|czz<dxyI
31 30 rexlimivv abx=z|azz<bcdy=z|czz<dxyI
32 3 31 sylbi xIcdy=z|czz<dxyI
33 32 com12 cdy=z|czz<dxIxyI
34 33 3expia cdy=z|czz<dxIxyI
35 34 rexlimivv cdy=z|czz<dxIxyI
36 2 35 sylbi yIxIxyI
37 36 impcom xIyIxyI