Metamath Proof Explorer


Theorem icoreelrnab

Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis icoreelrnab.1 I = . 2
Assertion icoreelrnab X I a b X = z | a z z < b

Proof

Step Hyp Ref Expression
1 icoreelrnab.1 I = . 2
2 df-ima . 2 = ran . 2
3 1 2 eqtri I = ran . 2
4 3 eleq2i X I X ran . 2
5 icoreresf . 2 : 2 𝒫
6 ffn . 2 : 2 𝒫 . 2 Fn 2
7 ovelrn . 2 Fn 2 X ran . 2 a b X = a . 2 b
8 5 6 7 mp2b X ran . 2 a b X = a . 2 b
9 4 8 bitri X I a b X = a . 2 b
10 ovres a b a . 2 b = a b
11 10 eqeq2d a b X = a . 2 b X = a b
12 11 2rexbiia a b X = a . 2 b a b X = a b
13 9 12 bitri X I a b X = a b
14 icoreval a b a b = z | a z z < b
15 14 eqeq2d a b X = a b X = z | a z z < b
16 15 2rexbiia a b X = a b a b X = z | a z z < b
17 13 16 bitri X I a b X = z | a z z < b