Metamath Proof Explorer


Theorem icoreelrnab

Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis icoreelrnab.1 I=.2
Assertion icoreelrnab XIabX=z|azz<b

Proof

Step Hyp Ref Expression
1 icoreelrnab.1 I=.2
2 df-ima .2=ran.2
3 1 2 eqtri I=ran.2
4 3 eleq2i XIXran.2
5 icoreresf .2:2𝒫
6 ffn .2:2𝒫.2Fn2
7 ovelrn .2Fn2Xran.2abX=a.2b
8 5 6 7 mp2b Xran.2abX=a.2b
9 4 8 bitri XIabX=a.2b
10 ovres aba.2b=ab
11 10 eqeq2d abX=a.2bX=ab
12 11 2rexbiia abX=a.2babX=ab
13 9 12 bitri XIabX=ab
14 icoreval abab=z|azz<b
15 14 eqeq2d abX=abX=z|azz<b
16 15 2rexbiia abX=ababX=z|azz<b
17 13 16 bitri XIabX=z|azz<b