Metamath Proof Explorer


Theorem idlnegcl

Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlnegcl.1 G=1stR
idlnegcl.2 N=invG
Assertion idlnegcl RRingOpsIIdlRAINAI

Proof

Step Hyp Ref Expression
1 idlnegcl.1 G=1stR
2 idlnegcl.2 N=invG
3 eqid ranG=ranG
4 1 3 idlss RRingOpsIIdlRIranG
5 ssel2 IranGAIAranG
6 eqid 2ndR=2ndR
7 eqid GId2ndR=GId2ndR
8 1 6 3 2 7 rngonegmn1l RRingOpsAranGNA=NGId2ndR2ndRA
9 5 8 sylan2 RRingOpsIranGAINA=NGId2ndR2ndRA
10 9 anassrs RRingOpsIranGAINA=NGId2ndR2ndRA
11 4 10 syldanl RRingOpsIIdlRAINA=NGId2ndR2ndRA
12 1 rneqi ranG=ran1stR
13 12 6 7 rngo1cl RRingOpsGId2ndRranG
14 1 3 2 rngonegcl RRingOpsGId2ndRranGNGId2ndRranG
15 13 14 mpdan RRingOpsNGId2ndRranG
16 15 ad2antrr RRingOpsIIdlRAINGId2ndRranG
17 1 6 3 idllmulcl RRingOpsIIdlRAINGId2ndRranGNGId2ndR2ndRAI
18 17 anassrs RRingOpsIIdlRAINGId2ndRranGNGId2ndR2ndRAI
19 16 18 mpdan RRingOpsIIdlRAINGId2ndR2ndRAI
20 11 19 eqeltrd RRingOpsIIdlRAINAI