Metamath Proof Explorer


Theorem idlnegcl

Description: An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlnegcl.1 G = 1 st R
idlnegcl.2 N = inv G
Assertion idlnegcl R RingOps I Idl R A I N A I

Proof

Step Hyp Ref Expression
1 idlnegcl.1 G = 1 st R
2 idlnegcl.2 N = inv G
3 eqid ran G = ran G
4 1 3 idlss R RingOps I Idl R I ran G
5 ssel2 I ran G A I A ran G
6 eqid 2 nd R = 2 nd R
7 eqid GId 2 nd R = GId 2 nd R
8 1 6 3 2 7 rngonegmn1l R RingOps A ran G N A = N GId 2 nd R 2 nd R A
9 5 8 sylan2 R RingOps I ran G A I N A = N GId 2 nd R 2 nd R A
10 9 anassrs R RingOps I ran G A I N A = N GId 2 nd R 2 nd R A
11 4 10 syldanl R RingOps I Idl R A I N A = N GId 2 nd R 2 nd R A
12 1 rneqi ran G = ran 1 st R
13 12 6 7 rngo1cl R RingOps GId 2 nd R ran G
14 1 3 2 rngonegcl R RingOps GId 2 nd R ran G N GId 2 nd R ran G
15 13 14 mpdan R RingOps N GId 2 nd R ran G
16 15 ad2antrr R RingOps I Idl R A I N GId 2 nd R ran G
17 1 6 3 idllmulcl R RingOps I Idl R A I N GId 2 nd R ran G N GId 2 nd R 2 nd R A I
18 17 anassrs R RingOps I Idl R A I N GId 2 nd R ran G N GId 2 nd R 2 nd R A I
19 16 18 mpdan R RingOps I Idl R A I N GId 2 nd R 2 nd R A I
20 11 19 eqeltrd R RingOps I Idl R A I N A I