Metamath Proof Explorer


Theorem idlsrgmulrss1

Description: In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses idlsrgmulrss1.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrgmulrss1.2 B=LIdealR
idlsrgmulrss1.3 ˙=S
idlsrgmulrss1.4 ·˙=R
idlsrgmulrss1.5 φRCRing
idlsrgmulrss1.6 φIB
idlsrgmulrss1.7 φJB
Assertion idlsrgmulrss1 φI˙JI

Proof

Step Hyp Ref Expression
1 idlsrgmulrss1.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrgmulrss1.2 B=LIdealR
3 idlsrgmulrss1.3 ˙=S
4 idlsrgmulrss1.4 ·˙=R
5 idlsrgmulrss1.5 φRCRing
6 idlsrgmulrss1.6 φIB
7 idlsrgmulrss1.7 φJB
8 eqid mulGrpR=mulGrpR
9 eqid LSSummulGrpR=LSSummulGrpR
10 1 2 3 8 9 5 6 7 idlsrgmulrval φI˙J=RSpanRILSSummulGrpRJ
11 crngring RCRingRRing
12 rlmlmod RRingringLModRLMod
13 5 11 12 3syl φringLModRLMod
14 eqid BaseR=BaseR
15 14 2 lidlss IBIBaseR
16 6 15 syl φIBaseR
17 14 2 lidlss JBJBaseR
18 7 17 syl φJBaseR
19 6 2 eleqtrdi φILIdealR
20 14 8 9 5 18 19 ringlsmss1 φILSSummulGrpRJI
21 rlmbas BaseR=BaseringLModR
22 rspval RSpanR=LSpanringLModR
23 21 22 lspss ringLModRLModIBaseRILSSummulGrpRJIRSpanRILSSummulGrpRJRSpanRI
24 13 16 20 23 syl3anc φRSpanRILSSummulGrpRJRSpanRI
25 5 11 syl φRRing
26 eqid RSpanR=RSpanR
27 26 2 rspidlid RRingIBRSpanRI=I
28 25 6 27 syl2anc φRSpanRI=I
29 24 28 sseqtrd φRSpanRILSSummulGrpRJI
30 10 29 eqsstrd φI˙JI