Description: In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | idlsrgmulrss1.1 | No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
idlsrgmulrss1.2 | |
||
idlsrgmulrss1.3 | |
||
idlsrgmulrss1.4 | |
||
idlsrgmulrss1.5 | |
||
idlsrgmulrss1.6 | |
||
idlsrgmulrss1.7 | |
||
Assertion | idlsrgmulrss1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgmulrss1.1 | Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
2 | idlsrgmulrss1.2 | |
|
3 | idlsrgmulrss1.3 | |
|
4 | idlsrgmulrss1.4 | |
|
5 | idlsrgmulrss1.5 | |
|
6 | idlsrgmulrss1.6 | |
|
7 | idlsrgmulrss1.7 | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 1 2 3 8 9 5 6 7 | idlsrgmulrval | |
11 | crngring | |
|
12 | rlmlmod | |
|
13 | 5 11 12 | 3syl | |
14 | eqid | |
|
15 | 14 2 | lidlss | |
16 | 6 15 | syl | |
17 | 14 2 | lidlss | |
18 | 7 17 | syl | |
19 | 6 2 | eleqtrdi | |
20 | 14 8 9 5 18 19 | ringlsmss1 | |
21 | rlmbas | |
|
22 | rspval | |
|
23 | 21 22 | lspss | |
24 | 13 16 20 23 | syl3anc | |
25 | 5 11 | syl | |
26 | eqid | |
|
27 | 26 2 | rspidlid | |
28 | 25 6 27 | syl2anc | |
29 | 24 28 | sseqtrd | |
30 | 10 29 | eqsstrd | |