Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ideal generators
igenidl
Next ⟩
igenmin
Metamath Proof Explorer
Ascii
Unicode
Theorem
igenidl
Description:
The ideal generated by a set is an ideal.
(Contributed by
Jeff Madsen
, 10-Jun-2010)
Ref
Expression
Hypotheses
igenval.1
⊢
G
=
1
st
⁡
R
igenval.2
⊢
X
=
ran
⁡
G
Assertion
igenidl
⊢
R
∈
RingOps
∧
S
⊆
X
→
R
IdlGen
S
∈
Idl
⁡
R
Proof
Step
Hyp
Ref
Expression
1
igenval.1
⊢
G
=
1
st
⁡
R
2
igenval.2
⊢
X
=
ran
⁡
G
3
1
2
igenval
⊢
R
∈
RingOps
∧
S
⊆
X
→
R
IdlGen
S
=
⋂
j
∈
Idl
⁡
R
|
S
⊆
j
4
1
2
rngoidl
⊢
R
∈
RingOps
→
X
∈
Idl
⁡
R
5
sseq2
⊢
j
=
X
→
S
⊆
j
↔
S
⊆
X
6
5
rspcev
⊢
X
∈
Idl
⁡
R
∧
S
⊆
X
→
∃
j
∈
Idl
⁡
R
S
⊆
j
7
4
6
sylan
⊢
R
∈
RingOps
∧
S
⊆
X
→
∃
j
∈
Idl
⁡
R
S
⊆
j
8
rabn0
⊢
j
∈
Idl
⁡
R
|
S
⊆
j
≠
∅
↔
∃
j
∈
Idl
⁡
R
S
⊆
j
9
7
8
sylibr
⊢
R
∈
RingOps
∧
S
⊆
X
→
j
∈
Idl
⁡
R
|
S
⊆
j
≠
∅
10
ssrab2
⊢
j
∈
Idl
⁡
R
|
S
⊆
j
⊆
Idl
⁡
R
11
intidl
⊢
R
∈
RingOps
∧
j
∈
Idl
⁡
R
|
S
⊆
j
≠
∅
∧
j
∈
Idl
⁡
R
|
S
⊆
j
⊆
Idl
⁡
R
→
⋂
j
∈
Idl
⁡
R
|
S
⊆
j
∈
Idl
⁡
R
12
10
11
mp3an3
⊢
R
∈
RingOps
∧
j
∈
Idl
⁡
R
|
S
⊆
j
≠
∅
→
⋂
j
∈
Idl
⁡
R
|
S
⊆
j
∈
Idl
⁡
R
13
9
12
syldan
⊢
R
∈
RingOps
∧
S
⊆
X
→
⋂
j
∈
Idl
⁡
R
|
S
⊆
j
∈
Idl
⁡
R
14
3
13
eqeltrd
⊢
R
∈
RingOps
∧
S
⊆
X
→
R
IdlGen
S
∈
Idl
⁡
R