Metamath Proof Explorer


Theorem igenidl

Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval.1 G = 1 st R
igenval.2 X = ran G
Assertion igenidl R RingOps S X R IdlGen S Idl R

Proof

Step Hyp Ref Expression
1 igenval.1 G = 1 st R
2 igenval.2 X = ran G
3 1 2 igenval R RingOps S X R IdlGen S = j Idl R | S j
4 1 2 rngoidl R RingOps X Idl R
5 sseq2 j = X S j S X
6 5 rspcev X Idl R S X j Idl R S j
7 4 6 sylan R RingOps S X j Idl R S j
8 rabn0 j Idl R | S j j Idl R S j
9 7 8 sylibr R RingOps S X j Idl R | S j
10 ssrab2 j Idl R | S j Idl R
11 intidl R RingOps j Idl R | S j j Idl R | S j Idl R j Idl R | S j Idl R
12 10 11 mp3an3 R RingOps j Idl R | S j j Idl R | S j Idl R
13 9 12 syldan R RingOps S X j Idl R | S j Idl R
14 3 13 eqeltrd R RingOps S X R IdlGen S Idl R