Metamath Proof Explorer


Theorem imaelshi

Description: The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses rnelsh.1 TLinOp
imaelsh.2 AS
Assertion imaelshi TAS

Proof

Step Hyp Ref Expression
1 rnelsh.1 TLinOp
2 imaelsh.2 AS
3 imassrn TAranT
4 1 lnopfi T:
5 frn T:ranT
6 4 5 ax-mp ranT
7 3 6 sstri TA
8 1 lnop0i T0=0
9 sh0 AS0A
10 2 9 ax-mp 0A
11 ffun T:FunT
12 4 11 ax-mp FunT
13 2 shssii A
14 4 fdmi domT=
15 13 14 sseqtrri AdomT
16 funfvima2 FunTAdomT0AT0TA
17 12 15 16 mp2an 0AT0TA
18 10 17 ax-mp T0TA
19 8 18 eqeltrri 0TA
20 7 19 pm3.2i TA0TA
21 ffn T:TFn
22 4 21 ax-mp TFn
23 oveq1 u=Txu+v=Tx+v
24 23 eleq1d u=Txu+vTATx+vTA
25 24 ralbidv u=TxvTAu+vTAvTATx+vTA
26 25 ralima TFnAuTAvTAu+vTAxAvTATx+vTA
27 22 13 26 mp2an uTAvTAu+vTAxAvTATx+vTA
28 2 sheli xAx
29 2 sheli yAy
30 1 lnopaddi xyTx+y=Tx+Ty
31 28 29 30 syl2an xAyATx+y=Tx+Ty
32 shaddcl ASxAyAx+yA
33 2 32 mp3an1 xAyAx+yA
34 funfvima2 FunTAdomTx+yATx+yTA
35 12 15 34 mp2an x+yATx+yTA
36 33 35 syl xAyATx+yTA
37 31 36 eqeltrrd xAyATx+TyTA
38 37 ralrimiva xAyATx+TyTA
39 oveq2 v=TyTx+v=Tx+Ty
40 39 eleq1d v=TyTx+vTATx+TyTA
41 40 ralima TFnAvTATx+vTAyATx+TyTA
42 22 13 41 mp2an vTATx+vTAyATx+TyTA
43 38 42 sylibr xAvTATx+vTA
44 27 43 mprgbir uTAvTAu+vTA
45 1 lnopmuli uyTuy=uTy
46 29 45 sylan2 uyATuy=uTy
47 shmulcl ASuyAuyA
48 2 47 mp3an1 uyAuyA
49 funfvima2 FunTAdomTuyATuyTA
50 12 15 49 mp2an uyATuyTA
51 48 50 syl uyATuyTA
52 46 51 eqeltrrd uyAuTyTA
53 52 ralrimiva uyAuTyTA
54 oveq2 v=Tyuv=uTy
55 54 eleq1d v=TyuvTAuTyTA
56 55 ralima TFnAvTAuvTAyAuTyTA
57 22 13 56 mp2an vTAuvTAyAuTyTA
58 53 57 sylibr uvTAuvTA
59 58 rgen uvTAuvTA
60 44 59 pm3.2i uTAvTAu+vTAuvTAuvTA
61 issh2 TASTA0TAuTAvTAu+vTAuvTAuvTA
62 20 60 61 mpbir2an TAS