Metamath Proof Explorer


Theorem imaeqexov

Description: Substitute an operation value into an existential quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypothesis imaeqexov.1 x=yFzφψ
Assertion imaeqexov FFnAB×CAxFB×CφyBzCψ

Proof

Step Hyp Ref Expression
1 imaeqexov.1 x=yFzφψ
2 df-rex xFB×CφxxFB×Cφ
3 ovelimab FFnAB×CAxFB×CyBzCx=yFz
4 3 anbi1d FFnAB×CAxFB×CφyBzCx=yFzφ
5 r19.41v zCx=yFzφzCx=yFzφ
6 5 rexbii yBzCx=yFzφyBzCx=yFzφ
7 r19.41v yBzCx=yFzφyBzCx=yFzφ
8 6 7 bitr2i yBzCx=yFzφyBzCx=yFzφ
9 4 8 bitrdi FFnAB×CAxFB×CφyBzCx=yFzφ
10 9 exbidv FFnAB×CAxxFB×CφxyBzCx=yFzφ
11 rexcom4 yBxzCx=yFzφxyBzCx=yFzφ
12 rexcom4 zCxx=yFzφxzCx=yFzφ
13 ovex yFzV
14 13 1 ceqsexv xx=yFzφψ
15 14 rexbii zCxx=yFzφzCψ
16 12 15 bitr3i xzCx=yFzφzCψ
17 16 rexbii yBxzCx=yFzφyBzCψ
18 11 17 bitr3i xyBzCx=yFzφyBzCψ
19 10 18 bitrdi FFnAB×CAxxFB×CφyBzCψ
20 2 19 bitrid FFnAB×CAxFB×CφyBzCψ