Metamath Proof Explorer


Theorem imasds

Description: The distance function of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
imasds.e E=distR
imasds.d D=distU
Assertion imasds φD=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 imasds.e E=distR
6 imasds.d D=distU
7 eqid +R=+R
8 eqid R=R
9 eqid ScalarR=ScalarR
10 eqid BaseScalarR=BaseScalarR
11 eqid R=R
12 eqid 𝑖R=𝑖R
13 eqid TopOpenR=TopOpenR
14 eqid R=R
15 eqidd φpVqVFpFqFp+Rq=pVqVFpFqFp+Rq
16 eqidd φpVqVFpFqFpRq=pVqVFpFqFpRq
17 eqidd φqVpBaseScalarR,xFqFpRq=qVpBaseScalarR,xFqFpRq
18 eqidd φpVqVFpFqp𝑖Rq=pVqVFpFqp𝑖Rq
19 eqidd φTopOpenRqTopF=TopOpenRqTopF
20 eqidd φxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
21 eqidd φFRF-1=FRF-1
22 1 2 7 8 9 10 11 12 13 5 14 15 16 17 18 19 20 21 3 4 imasval φU=BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
23 eqid BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<=BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
24 23 imasvalstr BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<Struct112
25 dsid dist=Slotdistndx
26 snsstp3 distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<TopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
27 ssun2 TopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
28 26 27 sstri distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<BasendxB+ndxpVqVFpFqFp+RqndxpVqVFpFqFpRqScalarndxScalarRndxqVpBaseScalarR,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<
29 fvex BaseRV
30 2 29 eqeltrdi φVV
31 focdmex VVF:VontoBBV
32 30 3 31 sylc φBV
33 mpoexga BVBVxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<V
34 32 32 33 syl2anc φxB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<V
35 22 24 25 28 34 6 strfv3 φD=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*Eg*<