| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasmnd.u |  | 
						
							| 2 |  | imasmnd.v |  | 
						
							| 3 |  | imasmnd.p |  | 
						
							| 4 |  | imasmnd.f |  | 
						
							| 5 |  | imasmnd.e |  | 
						
							| 6 |  | imasmnd.r |  | 
						
							| 7 |  | imasmnd.z |  | 
						
							| 8 | 6 | 3ad2ant1 |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 | 2 | 3ad2ant1 |  | 
						
							| 11 | 9 10 | eleqtrd |  | 
						
							| 12 |  | simp3 |  | 
						
							| 13 | 12 10 | eleqtrd |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 3 | mndcl |  | 
						
							| 16 | 8 11 13 15 | syl3anc |  | 
						
							| 17 | 16 10 | eleqtrrd |  | 
						
							| 18 | 6 | adantr |  | 
						
							| 19 | 11 | 3adant3r3 |  | 
						
							| 20 | 13 | 3adant3r3 |  | 
						
							| 21 |  | simpr3 |  | 
						
							| 22 | 2 | adantr |  | 
						
							| 23 | 21 22 | eleqtrd |  | 
						
							| 24 | 14 3 | mndass |  | 
						
							| 25 | 18 19 20 23 24 | syl13anc |  | 
						
							| 26 | 25 | fveq2d |  | 
						
							| 27 | 14 7 | mndidcl |  | 
						
							| 28 | 6 27 | syl |  | 
						
							| 29 | 28 2 | eleqtrrd |  | 
						
							| 30 | 2 | eleq2d |  | 
						
							| 31 | 30 | biimpa |  | 
						
							| 32 | 14 3 7 | mndlid |  | 
						
							| 33 | 6 31 32 | syl2an2r |  | 
						
							| 34 | 33 | fveq2d |  | 
						
							| 35 | 14 3 7 | mndrid |  | 
						
							| 36 | 6 31 35 | syl2an2r |  | 
						
							| 37 | 36 | fveq2d |  | 
						
							| 38 | 1 2 3 4 5 6 17 26 29 34 37 | imasmnd2 |  |