Metamath Proof Explorer


Theorem imasubc3

Description: An image of a functor injective on objects is a subcategory. Remark 4.2(3) of Adamek p. 48. (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubc.s S = F A
imasubc.h H = Hom D
imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
imassc.f φ F D Func E G
imasubc3.f φ Fun F -1
Assertion imasubc3 φ K Subcat E

Proof

Step Hyp Ref Expression
1 imasubc.s S = F A
2 imasubc.h H = Hom D
3 imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
4 imassc.f φ F D Func E G
5 imasubc3.f φ Fun F -1
6 eqid Hom 𝑓 E = Hom 𝑓 E
7 1 2 3 4 6 imassc φ K cat Hom 𝑓 E
8 4 adantr φ a S F D Func E G
9 eqid Id E = Id E
10 simpr φ a S a S
11 1 2 3 8 9 10 imaid φ a S Id E a a K a
12 4 ad3antrrr φ a S b S c S f a K b g b K c F D Func E G
13 eqid Base D = Base D
14 eqid Base E = Base E
15 eqid comp E = comp E
16 13 14 4 funcf1 φ F : Base D Base E
17 df-f1 F : Base D 1-1 Base E F : Base D Base E Fun F -1
18 16 5 17 sylanbrc φ F : Base D 1-1 Base E
19 18 ad3antrrr φ a S b S c S f a K b g b K c F : Base D 1-1 Base E
20 simpllr φ a S b S c S f a K b g b K c a S
21 simplrl φ a S b S c S f a K b g b K c b S
22 simplrr φ a S b S c S f a K b g b K c c S
23 simprl φ a S b S c S f a K b g b K c f a K b
24 simprr φ a S b S c S f a K b g b K c g b K c
25 1 2 3 12 13 14 15 19 20 21 22 23 24 imaf1co φ a S b S c S f a K b g b K c g a b comp E c f a K c
26 25 ralrimivva φ a S b S c S f a K b g b K c g a b comp E c f a K c
27 26 ralrimivva φ a S b S c S f a K b g b K c g a b comp E c f a K c
28 11 27 jca φ a S Id E a a K a b S c S f a K b g b K c g a b comp E c f a K c
29 28 ralrimiva φ a S Id E a a K a b S c S f a K b g b K c g a b comp E c f a K c
30 4 funcrcl3 φ E Cat
31 relfunc Rel D Func E
32 31 brrelex1i F D Func E G F V
33 4 32 syl φ F V
34 33 33 3 imasubclem2 φ K Fn S × S
35 6 9 15 30 34 issubc2 φ K Subcat E K cat Hom 𝑓 E a S Id E a a K a b S c S f a K b g b K c g a b comp E c f a K c
36 7 29 35 mpbir2and φ K Subcat E