Metamath Proof Explorer


Theorem imasvscaf

Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasvscaf.u φ U = F 𝑠 R
imasvscaf.v φ V = Base R
imasvscaf.f φ F : V onto B
imasvscaf.r φ R Z
imasvscaf.g G = Scalar R
imasvscaf.k K = Base G
imasvscaf.q · ˙ = R
imasvscaf.s ˙ = U
imasvscaf.e φ p K a V q V F a = F q F p · ˙ a = F p · ˙ q
imasvscaf.c φ p K q V p · ˙ q V
Assertion imasvscaf φ ˙ : K × B B

Proof

Step Hyp Ref Expression
1 imasvscaf.u φ U = F 𝑠 R
2 imasvscaf.v φ V = Base R
3 imasvscaf.f φ F : V onto B
4 imasvscaf.r φ R Z
5 imasvscaf.g G = Scalar R
6 imasvscaf.k K = Base G
7 imasvscaf.q · ˙ = R
8 imasvscaf.s ˙ = U
9 imasvscaf.e φ p K a V q V F a = F q F p · ˙ a = F p · ˙ q
10 imasvscaf.c φ p K q V p · ˙ q V
11 1 2 3 4 5 6 7 8 9 imasvscafn φ ˙ Fn K × B
12 1 2 3 4 5 6 7 8 imasvsca φ ˙ = q V p K , x F q F p · ˙ q
13 fof F : V onto B F : V B
14 3 13 syl φ F : V B
15 14 ffvelrnda φ p · ˙ q V F p · ˙ q B
16 10 15 syldan φ p K q V F p · ˙ q B
17 16 ralrimivw φ p K q V x F q F p · ˙ q B
18 17 anass1rs φ q V p K x F q F p · ˙ q B
19 18 ralrimiva φ q V p K x F q F p · ˙ q B
20 eqid p K , x F q F p · ˙ q = p K , x F q F p · ˙ q
21 20 fmpo p K x F q F p · ˙ q B p K , x F q F p · ˙ q : K × F q B
22 19 21 sylib φ q V p K , x F q F p · ˙ q : K × F q B
23 fssxp p K , x F q F p · ˙ q : K × F q B p K , x F q F p · ˙ q K × F q × B
24 22 23 syl φ q V p K , x F q F p · ˙ q K × F q × B
25 14 ffvelrnda φ q V F q B
26 25 snssd φ q V F q B
27 xpss2 F q B K × F q K × B
28 xpss1 K × F q K × B K × F q × B K × B × B
29 26 27 28 3syl φ q V K × F q × B K × B × B
30 24 29 sstrd φ q V p K , x F q F p · ˙ q K × B × B
31 30 ralrimiva φ q V p K , x F q F p · ˙ q K × B × B
32 iunss q V p K , x F q F p · ˙ q K × B × B q V p K , x F q F p · ˙ q K × B × B
33 31 32 sylibr φ q V p K , x F q F p · ˙ q K × B × B
34 12 33 eqsstrd φ ˙ K × B × B
35 dff2 ˙ : K × B B ˙ Fn K × B ˙ K × B × B
36 11 34 35 sylanbrc φ ˙ : K × B B