Metamath Proof Explorer


Theorem imasvscaf

Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasvscaf.u φU=F𝑠R
imasvscaf.v φV=BaseR
imasvscaf.f φF:VontoB
imasvscaf.r φRZ
imasvscaf.g G=ScalarR
imasvscaf.k K=BaseG
imasvscaf.q ·˙=R
imasvscaf.s ˙=U
imasvscaf.e φpKaVqVFa=FqFp·˙a=Fp·˙q
imasvscaf.c φpKqVp·˙qV
Assertion imasvscaf φ˙:K×BB

Proof

Step Hyp Ref Expression
1 imasvscaf.u φU=F𝑠R
2 imasvscaf.v φV=BaseR
3 imasvscaf.f φF:VontoB
4 imasvscaf.r φRZ
5 imasvscaf.g G=ScalarR
6 imasvscaf.k K=BaseG
7 imasvscaf.q ·˙=R
8 imasvscaf.s ˙=U
9 imasvscaf.e φpKaVqVFa=FqFp·˙a=Fp·˙q
10 imasvscaf.c φpKqVp·˙qV
11 1 2 3 4 5 6 7 8 9 imasvscafn φ˙FnK×B
12 1 2 3 4 5 6 7 8 imasvsca φ˙=qVpK,xFqFp·˙q
13 fof F:VontoBF:VB
14 3 13 syl φF:VB
15 14 ffvelcdmda φp·˙qVFp·˙qB
16 10 15 syldan φpKqVFp·˙qB
17 16 ralrimivw φpKqVxFqFp·˙qB
18 17 anass1rs φqVpKxFqFp·˙qB
19 18 ralrimiva φqVpKxFqFp·˙qB
20 eqid pK,xFqFp·˙q=pK,xFqFp·˙q
21 20 fmpo pKxFqFp·˙qBpK,xFqFp·˙q:K×FqB
22 19 21 sylib φqVpK,xFqFp·˙q:K×FqB
23 fssxp pK,xFqFp·˙q:K×FqBpK,xFqFp·˙qK×Fq×B
24 22 23 syl φqVpK,xFqFp·˙qK×Fq×B
25 14 ffvelcdmda φqVFqB
26 25 snssd φqVFqB
27 xpss2 FqBK×FqK×B
28 xpss1 K×FqK×BK×Fq×BK×B×B
29 26 27 28 3syl φqVK×Fq×BK×B×B
30 24 29 sstrd φqVpK,xFqFp·˙qK×B×B
31 30 ralrimiva φqVpK,xFqFp·˙qK×B×B
32 iunss qVpK,xFqFp·˙qK×B×BqVpK,xFqFp·˙qK×B×B
33 31 32 sylibr φqVpK,xFqFp·˙qK×B×B
34 12 33 eqsstrd φ˙K×B×B
35 dff2 ˙:K×BB˙FnK×B˙K×B×B
36 11 34 35 sylanbrc φ˙:K×BB