Metamath Proof Explorer


Theorem imasvscaval

Description: The value of an image structure's scalar multiplication. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasvscaf.u φU=F𝑠R
imasvscaf.v φV=BaseR
imasvscaf.f φF:VontoB
imasvscaf.r φRZ
imasvscaf.g G=ScalarR
imasvscaf.k K=BaseG
imasvscaf.q ·˙=R
imasvscaf.s ˙=U
imasvscaf.e φpKaVqVFa=FqFp·˙a=Fp·˙q
Assertion imasvscaval φXKYVX˙FY=FX·˙Y

Proof

Step Hyp Ref Expression
1 imasvscaf.u φU=F𝑠R
2 imasvscaf.v φV=BaseR
3 imasvscaf.f φF:VontoB
4 imasvscaf.r φRZ
5 imasvscaf.g G=ScalarR
6 imasvscaf.k K=BaseG
7 imasvscaf.q ·˙=R
8 imasvscaf.s ˙=U
9 imasvscaf.e φpKaVqVFa=FqFp·˙a=Fp·˙q
10 1 2 3 4 5 6 7 8 9 imasvscafn φ˙FnK×B
11 fnfun ˙FnK×BFun˙
12 10 11 syl φFun˙
13 12 3ad2ant1 φXKYVFun˙
14 eqidd q=YK=K
15 fveq2 q=YFq=FY
16 15 sneqd q=YFq=FY
17 oveq2 q=Yp·˙q=p·˙Y
18 17 fveq2d q=YFp·˙q=Fp·˙Y
19 14 16 18 mpoeq123dv q=YpK,xFqFp·˙q=pK,xFYFp·˙Y
20 19 ssiun2s YVpK,xFYFp·˙YqVpK,xFqFp·˙q
21 20 3ad2ant3 φXKYVpK,xFYFp·˙YqVpK,xFqFp·˙q
22 1 2 3 4 5 6 7 8 imasvsca φ˙=qVpK,xFqFp·˙q
23 22 3ad2ant1 φXKYV˙=qVpK,xFqFp·˙q
24 21 23 sseqtrrd φXKYVpK,xFYFp·˙Y˙
25 simp2 φXKYVXK
26 fvex FYV
27 26 snid FYFY
28 opelxpi XKFYFYXFYK×FY
29 25 27 28 sylancl φXKYVXFYK×FY
30 eqid pK,xFYFp·˙Y=pK,xFYFp·˙Y
31 fvex Fp·˙YV
32 30 31 dmmpo dompK,xFYFp·˙Y=K×FY
33 29 32 eleqtrrdi φXKYVXFYdompK,xFYFp·˙Y
34 funssfv Fun˙pK,xFYFp·˙Y˙XFYdompK,xFYFp·˙Y˙XFY=pK,xFYFp·˙YXFY
35 13 24 33 34 syl3anc φXKYV˙XFY=pK,xFYFp·˙YXFY
36 df-ov X˙FY=˙XFY
37 df-ov XpK,xFYFp·˙YFY=pK,xFYFp·˙YXFY
38 35 36 37 3eqtr4g φXKYVX˙FY=XpK,xFYFp·˙YFY
39 fvoveq1 p=XFp·˙Y=FX·˙Y
40 eqidd x=FYFX·˙Y=FX·˙Y
41 fvex FX·˙YV
42 39 40 30 41 ovmpo XKFYFYXpK,xFYFp·˙YFY=FX·˙Y
43 25 27 42 sylancl φXKYVXpK,xFYFp·˙YFY=FX·˙Y
44 38 43 eqtrd φXKYVX˙FY=FX·˙Y