Metamath Proof Explorer


Theorem imlmhm

Description: The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Hypothesis imlmhm.i I=U𝑠ranF
Assertion imlmhm VLVecFVLMHomUILVec

Proof

Step Hyp Ref Expression
1 imlmhm.i I=U𝑠ranF
2 lmhmlvec2 VLVecFVLMHomUULVec
3 lmhmrnlss FVLMHomUranFLSubSpU
4 3 adantl VLVecFVLMHomUranFLSubSpU
5 eqid LSubSpU=LSubSpU
6 1 5 lsslvec ULVecranFLSubSpUILVec
7 2 4 6 syl2anc VLVecFVLMHomUILVec