Metamath Proof Explorer


Theorem imlmhm

Description: The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Hypothesis imlmhm.i I = U 𝑠 ran F
Assertion imlmhm V LVec F V LMHom U I LVec

Proof

Step Hyp Ref Expression
1 imlmhm.i I = U 𝑠 ran F
2 lmhmlvec2 V LVec F V LMHom U U LVec
3 lmhmrnlss F V LMHom U ran F LSubSp U
4 3 adantl V LVec F V LMHom U ran F LSubSp U
5 eqid LSubSp U = LSubSp U
6 1 5 lsslvec U LVec ran F LSubSp U I LVec
7 2 4 6 syl2anc V LVec F V LMHom U I LVec