Metamath Proof Explorer


Theorem inaex

Description: Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion inaex AOnxInaccAx

Proof

Step Hyp Ref Expression
1 inawina xInaccxInacc𝑤
2 winaon xInacc𝑤xOn
3 1 2 syl xInaccxOn
4 3 ssriv InaccOn
5 onmindif InaccOnAOnAInaccsucA
6 4 5 mpan AOnAInaccsucA
7 6 adantr AOnx=InaccsucAAInaccsucA
8 simpr AOnx=InaccsucAx=InaccsucA
9 7 8 eleqtrrd AOnx=InaccsucAAx
10 difss InaccsucAInacc
11 10 4 sstri InaccsucAOn
12 inaprc InaccV
13 12 neli ¬InaccV
14 ssdif0 InaccsucAInaccsucA=
15 sucexg AOnsucAV
16 ssexg InaccsucAsucAVInaccV
17 16 expcom sucAVInaccsucAInaccV
18 15 17 syl AOnInaccsucAInaccV
19 14 18 biimtrrid AOnInaccsucA=InaccV
20 13 19 mtoi AOn¬InaccsucA=
21 20 neqned AOnInaccsucA
22 onint InaccsucAOnInaccsucAInaccsucAInaccsucA
23 11 21 22 sylancr AOnInaccsucAInaccsucA
24 23 eldifad AOnInaccsucAInacc
25 9 24 rspcime AOnxInaccAx