Metamath Proof Explorer


Theorem inf3lem3

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg . (Contributed by NM, 29-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G = y V w x | w x y
inf3lem.2 F = rec G ω
inf3lem.3 A V
inf3lem.4 B V
Assertion inf3lem3 x x x A ω F A F suc A

Proof

Step Hyp Ref Expression
1 inf3lem.1 G = y V w x | w x y
2 inf3lem.2 F = rec G ω
3 inf3lem.3 A V
4 inf3lem.4 B V
5 1 2 3 4 inf3lemd A ω F A x
6 1 2 3 4 inf3lem2 x x x A ω F A x
7 6 com12 A ω x x x F A x
8 pssdifn0 F A x F A x x F A
9 5 7 8 syl6an A ω x x x x F A
10 vex x V
11 10 difexi x F A V
12 zfreg x F A V x F A v x F A v x F A =
13 11 12 mpan x F A v x F A v x F A =
14 eldifi v x F A v x
15 inssdif0 v x F A v x F A =
16 15 biimpri v x F A = v x F A
17 14 16 anim12i v x F A v x F A = v x v x F A
18 vex v V
19 fvex F A V
20 1 2 18 19 inf3lema v G F A v x v x F A
21 17 20 sylibr v x F A v x F A = v G F A
22 1 2 3 4 inf3lemc A ω F suc A = G F A
23 22 eleq2d A ω v F suc A v G F A
24 21 23 syl5ibr A ω v x F A v x F A = v F suc A
25 eldifn v x F A ¬ v F A
26 25 adantr v x F A v x F A = ¬ v F A
27 24 26 jca2 A ω v x F A v x F A = v F suc A ¬ v F A
28 eleq2 F A = F suc A v F A v F suc A
29 28 biimprd F A = F suc A v F suc A v F A
30 iman v F suc A v F A ¬ v F suc A ¬ v F A
31 29 30 sylib F A = F suc A ¬ v F suc A ¬ v F A
32 31 necon2ai v F suc A ¬ v F A F A F suc A
33 27 32 syl6 A ω v x F A v x F A = F A F suc A
34 33 expd A ω v x F A v x F A = F A F suc A
35 34 rexlimdv A ω v x F A v x F A = F A F suc A
36 13 35 syl5 A ω x F A F A F suc A
37 9 36 syldc x x x A ω F A F suc A