| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 |  | 
						
							| 2 |  | inf3lem.2 |  | 
						
							| 3 |  | inf3lem.3 |  | 
						
							| 4 |  | inf3lem.4 |  | 
						
							| 5 | 1 2 3 4 | inf3lemd |  | 
						
							| 6 | 1 2 3 4 | inf3lem2 |  | 
						
							| 7 | 6 | com12 |  | 
						
							| 8 |  | pssdifn0 |  | 
						
							| 9 | 5 7 8 | syl6an |  | 
						
							| 10 |  | vex |  | 
						
							| 11 | 10 | difexi |  | 
						
							| 12 |  | zfreg |  | 
						
							| 13 | 11 12 | mpan |  | 
						
							| 14 |  | eldifi |  | 
						
							| 15 |  | inssdif0 |  | 
						
							| 16 | 15 | biimpri |  | 
						
							| 17 | 14 16 | anim12i |  | 
						
							| 18 |  | vex |  | 
						
							| 19 |  | fvex |  | 
						
							| 20 | 1 2 18 19 | inf3lema |  | 
						
							| 21 | 17 20 | sylibr |  | 
						
							| 22 | 1 2 3 4 | inf3lemc |  | 
						
							| 23 | 22 | eleq2d |  | 
						
							| 24 | 21 23 | imbitrrid |  | 
						
							| 25 |  | eldifn |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 24 26 | jca2 |  | 
						
							| 28 |  | eleq2 |  | 
						
							| 29 | 28 | biimprd |  | 
						
							| 30 |  | iman |  | 
						
							| 31 | 29 30 | sylib |  | 
						
							| 32 | 31 | necon2ai |  | 
						
							| 33 | 27 32 | syl6 |  | 
						
							| 34 | 33 | expd |  | 
						
							| 35 | 34 | rexlimdv |  | 
						
							| 36 | 13 35 | syl5 |  | 
						
							| 37 | 9 36 | syldc |  |