Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg . (Contributed by NM, 29-Oct-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | inf3lem.1 | |
|
inf3lem.2 | |
||
inf3lem.3 | |
||
inf3lem.4 | |
||
Assertion | inf3lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | |
|
2 | inf3lem.2 | |
|
3 | inf3lem.3 | |
|
4 | inf3lem.4 | |
|
5 | 1 2 3 4 | inf3lemd | |
6 | 1 2 3 4 | inf3lem2 | |
7 | 6 | com12 | |
8 | pssdifn0 | |
|
9 | 5 7 8 | syl6an | |
10 | vex | |
|
11 | 10 | difexi | |
12 | zfreg | |
|
13 | 11 12 | mpan | |
14 | eldifi | |
|
15 | inssdif0 | |
|
16 | 15 | biimpri | |
17 | 14 16 | anim12i | |
18 | vex | |
|
19 | fvex | |
|
20 | 1 2 18 19 | inf3lema | |
21 | 17 20 | sylibr | |
22 | 1 2 3 4 | inf3lemc | |
23 | 22 | eleq2d | |
24 | 21 23 | imbitrrid | |
25 | eldifn | |
|
26 | 25 | adantr | |
27 | 24 26 | jca2 | |
28 | eleq2 | |
|
29 | 28 | biimprd | |
30 | iman | |
|
31 | 29 30 | sylib | |
32 | 31 | necon2ai | |
33 | 27 32 | syl6 | |
34 | 33 | expd | |
35 | 34 | rexlimdv | |
36 | 13 35 | syl5 | |
37 | 9 36 | syldc | |