Metamath Proof Explorer


Theorem inf3lem3

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg . (Contributed by NM, 29-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G=yVwx|wxy
inf3lem.2 F=recGω
inf3lem.3 AV
inf3lem.4 BV
Assertion inf3lem3 xxxAωFAFsucA

Proof

Step Hyp Ref Expression
1 inf3lem.1 G=yVwx|wxy
2 inf3lem.2 F=recGω
3 inf3lem.3 AV
4 inf3lem.4 BV
5 1 2 3 4 inf3lemd AωFAx
6 1 2 3 4 inf3lem2 xxxAωFAx
7 6 com12 AωxxxFAx
8 pssdifn0 FAxFAxxFA
9 5 7 8 syl6an AωxxxxFA
10 vex xV
11 10 difexi xFAV
12 zfreg xFAVxFAvxFAvxFA=
13 11 12 mpan xFAvxFAvxFA=
14 eldifi vxFAvx
15 inssdif0 vxFAvxFA=
16 15 biimpri vxFA=vxFA
17 14 16 anim12i vxFAvxFA=vxvxFA
18 vex vV
19 fvex FAV
20 1 2 18 19 inf3lema vGFAvxvxFA
21 17 20 sylibr vxFAvxFA=vGFA
22 1 2 3 4 inf3lemc AωFsucA=GFA
23 22 eleq2d AωvFsucAvGFA
24 21 23 imbitrrid AωvxFAvxFA=vFsucA
25 eldifn vxFA¬vFA
26 25 adantr vxFAvxFA=¬vFA
27 24 26 jca2 AωvxFAvxFA=vFsucA¬vFA
28 eleq2 FA=FsucAvFAvFsucA
29 28 biimprd FA=FsucAvFsucAvFA
30 iman vFsucAvFA¬vFsucA¬vFA
31 29 30 sylib FA=FsucA¬vFsucA¬vFA
32 31 necon2ai vFsucA¬vFAFAFsucA
33 27 32 syl6 AωvxFAvxFA=FAFsucA
34 33 expd AωvxFAvxFA=FAFsucA
35 34 rexlimdv AωvxFAvxFA=FAFsucA
36 13 35 syl5 AωxFAFAFsucA
37 9 36 syldc xxxAωFAFsucA