Metamath Proof Explorer


Theorem inf3lem6

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G = y V w x | w x y
inf3lem.2 F = rec G ω
inf3lem.3 A V
inf3lem.4 B V
Assertion inf3lem6 x x x F : ω 1-1 𝒫 x

Proof

Step Hyp Ref Expression
1 inf3lem.1 G = y V w x | w x y
2 inf3lem.2 F = rec G ω
3 inf3lem.3 A V
4 inf3lem.4 B V
5 vex u V
6 vex v V
7 1 2 5 6 inf3lem5 x x x u ω v u F v F u
8 dfpss2 F v F u F v F u ¬ F v = F u
9 8 simprbi F v F u ¬ F v = F u
10 7 9 syl6 x x x u ω v u ¬ F v = F u
11 10 expdimp x x x u ω v u ¬ F v = F u
12 11 adantrl x x x v ω u ω v u ¬ F v = F u
13 1 2 6 5 inf3lem5 x x x v ω u v F u F v
14 dfpss2 F u F v F u F v ¬ F u = F v
15 14 simprbi F u F v ¬ F u = F v
16 eqcom F u = F v F v = F u
17 15 16 sylnib F u F v ¬ F v = F u
18 13 17 syl6 x x x v ω u v ¬ F v = F u
19 18 expdimp x x x v ω u v ¬ F v = F u
20 19 adantrr x x x v ω u ω u v ¬ F v = F u
21 12 20 jaod x x x v ω u ω v u u v ¬ F v = F u
22 21 con2d x x x v ω u ω F v = F u ¬ v u u v
23 nnord v ω Ord v
24 nnord u ω Ord u
25 ordtri3 Ord v Ord u v = u ¬ v u u v
26 23 24 25 syl2an v ω u ω v = u ¬ v u u v
27 26 adantl x x x v ω u ω v = u ¬ v u u v
28 22 27 sylibrd x x x v ω u ω F v = F u v = u
29 28 ralrimivva x x x v ω u ω F v = F u v = u
30 frfnom rec G ω Fn ω
31 fneq1 F = rec G ω F Fn ω rec G ω Fn ω
32 30 31 mpbiri F = rec G ω F Fn ω
33 fvelrnb F Fn ω u ran F v ω F v = u
34 1 2 6 4 inf3lemd v ω F v x
35 fvex F v V
36 35 elpw F v 𝒫 x F v x
37 34 36 sylibr v ω F v 𝒫 x
38 eleq1 F v = u F v 𝒫 x u 𝒫 x
39 37 38 syl5ibcom v ω F v = u u 𝒫 x
40 39 rexlimiv v ω F v = u u 𝒫 x
41 33 40 syl6bi F Fn ω u ran F u 𝒫 x
42 41 ssrdv F Fn ω ran F 𝒫 x
43 42 ancli F Fn ω F Fn ω ran F 𝒫 x
44 2 32 43 mp2b F Fn ω ran F 𝒫 x
45 df-f F : ω 𝒫 x F Fn ω ran F 𝒫 x
46 44 45 mpbir F : ω 𝒫 x
47 29 46 jctil x x x F : ω 𝒫 x v ω u ω F v = F u v = u
48 dff13 F : ω 1-1 𝒫 x F : ω 𝒫 x v ω u ω F v = F u v = u
49 47 48 sylibr x x x F : ω 1-1 𝒫 x