| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inf3lem.1 |
|
| 2 |
|
inf3lem.2 |
|
| 3 |
|
inf3lem.3 |
|
| 4 |
|
inf3lem.4 |
|
| 5 |
|
vex |
|
| 6 |
|
vex |
|
| 7 |
1 2 5 6
|
inf3lem5 |
|
| 8 |
|
dfpss2 |
|
| 9 |
8
|
simprbi |
|
| 10 |
7 9
|
syl6 |
|
| 11 |
10
|
expdimp |
|
| 12 |
11
|
adantrl |
|
| 13 |
1 2 6 5
|
inf3lem5 |
|
| 14 |
|
dfpss2 |
|
| 15 |
14
|
simprbi |
|
| 16 |
|
eqcom |
|
| 17 |
15 16
|
sylnib |
|
| 18 |
13 17
|
syl6 |
|
| 19 |
18
|
expdimp |
|
| 20 |
19
|
adantrr |
|
| 21 |
12 20
|
jaod |
|
| 22 |
21
|
con2d |
|
| 23 |
|
nnord |
|
| 24 |
|
nnord |
|
| 25 |
|
ordtri3 |
|
| 26 |
23 24 25
|
syl2an |
|
| 27 |
26
|
adantl |
|
| 28 |
22 27
|
sylibrd |
|
| 29 |
28
|
ralrimivva |
|
| 30 |
|
frfnom |
|
| 31 |
|
fneq1 |
|
| 32 |
30 31
|
mpbiri |
|
| 33 |
|
fvelrnb |
|
| 34 |
1 2 6 4
|
inf3lemd |
|
| 35 |
|
fvex |
|
| 36 |
35
|
elpw |
|
| 37 |
34 36
|
sylibr |
|
| 38 |
|
eleq1 |
|
| 39 |
37 38
|
syl5ibcom |
|
| 40 |
39
|
rexlimiv |
|
| 41 |
33 40
|
biimtrdi |
|
| 42 |
41
|
ssrdv |
|
| 43 |
42
|
ancli |
|
| 44 |
2 32 43
|
mp2b |
|
| 45 |
|
df-f |
|
| 46 |
44 45
|
mpbir |
|
| 47 |
29 46
|
jctil |
|
| 48 |
|
dff13 |
|
| 49 |
47 48
|
sylibr |
|