Metamath Proof Explorer


Theorem infglb

Description: An infimum is the greatest lower bound. See also infcl and inflb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φ R Or A
infcl.2 φ x A y B ¬ y R x y A x R y z B z R y
Assertion infglb φ C A sup B A R R C z B z R C

Proof

Step Hyp Ref Expression
1 infcl.1 φ R Or A
2 infcl.2 φ x A y B ¬ y R x y A x R y z B z R y
3 df-inf sup B A R = sup B A R -1
4 3 breq1i sup B A R R C sup B A R -1 R C
5 simpr φ C A C A
6 cnvso R Or A R -1 Or A
7 1 6 sylib φ R -1 Or A
8 1 2 infcllem φ x A y B ¬ x R -1 y y A y R -1 x z B y R -1 z
9 7 8 supcl φ sup B A R -1 A
10 9 adantr φ C A sup B A R -1 A
11 brcnvg C A sup B A R -1 A C R -1 sup B A R -1 sup B A R -1 R C
12 11 bicomd C A sup B A R -1 A sup B A R -1 R C C R -1 sup B A R -1
13 5 10 12 syl2anc φ C A sup B A R -1 R C C R -1 sup B A R -1
14 4 13 bitrid φ C A sup B A R R C C R -1 sup B A R -1
15 7 8 suplub φ C A C R -1 sup B A R -1 z B C R -1 z
16 15 expdimp φ C A C R -1 sup B A R -1 z B C R -1 z
17 vex z V
18 brcnvg C A z V C R -1 z z R C
19 5 17 18 sylancl φ C A C R -1 z z R C
20 19 rexbidv φ C A z B C R -1 z z B z R C
21 16 20 sylibd φ C A C R -1 sup B A R -1 z B z R C
22 14 21 sylbid φ C A sup B A R R C z B z R C
23 22 expimpd φ C A sup B A R R C z B z R C