Metamath Proof Explorer


Theorem inflb

Description: An infimum is a lower bound. See also infcl and infglb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φROrA
infcl.2 φxAyB¬yRxyAxRyzBzRy
Assertion inflb φCB¬CRsupBAR

Proof

Step Hyp Ref Expression
1 infcl.1 φROrA
2 infcl.2 φxAyB¬yRxyAxRyzBzRy
3 cnvso ROrAR-1OrA
4 1 3 sylib φR-1OrA
5 1 2 infcllem φxAyB¬xR-1yyAyR-1xzByR-1z
6 4 5 supub φCB¬supBAR-1R-1C
7 6 imp φCB¬supBAR-1R-1C
8 df-inf supBAR=supBAR-1
9 8 a1i φCBsupBAR=supBAR-1
10 9 breq2d φCBCRsupBARCRsupBAR-1
11 4 5 supcl φsupBAR-1A
12 brcnvg supBAR-1ACBsupBAR-1R-1CCRsupBAR-1
13 12 bicomd supBAR-1ACBCRsupBAR-1supBAR-1R-1C
14 11 13 sylan φCBCRsupBAR-1supBAR-1R-1C
15 10 14 bitrd φCBCRsupBARsupBAR-1R-1C
16 7 15 mtbird φCB¬CRsupBAR
17 16 ex φCB¬CRsupBAR