Description: The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infrpgernmpt.x | |
|
infrpgernmpt.a | |
||
infrpgernmpt.b | |
||
infrpgernmpt.y | |
||
infrpgernmpt.c | |
||
Assertion | infrpgernmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infrpgernmpt.x | |
|
2 | infrpgernmpt.a | |
|
3 | infrpgernmpt.b | |
|
4 | infrpgernmpt.y | |
|
5 | infrpgernmpt.c | |
|
6 | nfv | |
|
7 | eqid | |
|
8 | 1 7 3 | rnmptssd | |
9 | 1 3 7 2 | rnmptn0 | |
10 | breq1 | |
|
11 | 10 | ralbidv | |
12 | 11 | cbvrexvw | |
13 | 4 12 | sylib | |
14 | 13 | rnmptlb | |
15 | 6 8 9 14 5 | infrpge | |
16 | simpll | |
|
17 | simpr | |
|
18 | vex | |
|
19 | 7 | elrnmpt | |
20 | 18 19 | ax-mp | |
21 | 20 | biimpi | |
22 | 21 | ad2antlr | |
23 | nfcv | |
|
24 | nfcv | |
|
25 | nfmpt1 | |
|
26 | 25 | nfrn | |
27 | nfcv | |
|
28 | nfcv | |
|
29 | 26 27 28 | nfinf | |
30 | nfcv | |
|
31 | nfcv | |
|
32 | 29 30 31 | nfov | |
33 | 23 24 32 | nfbr | |
34 | 1 33 | nfan | |
35 | id | |
|
36 | 35 | eqcomd | |
37 | 36 | adantl | |
38 | simpl | |
|
39 | 37 38 | eqbrtrd | |
40 | 39 | ex | |
41 | 40 | a1d | |
42 | 41 | adantl | |
43 | 34 42 | reximdai | |
44 | 43 | imp | |
45 | 16 17 22 44 | syl21anc | |
46 | 45 | rexlimdva2 | |
47 | 15 46 | mpd | |