Metamath Proof Explorer


Theorem rnmptlb

Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis rnmptlb.1 φ y x A y B
Assertion rnmptlb φ y z ran x A B y z

Proof

Step Hyp Ref Expression
1 rnmptlb.1 φ y x A y B
2 eqid x A B = x A B
3 2 elrnmpt z V z ran x A B x A z = B
4 3 elv z ran x A B x A z = B
5 nfra1 x x A w B
6 nfv x w z
7 rspa x A w B x A w B
8 7 3adant3 x A w B x A z = B w B
9 simp3 x A w B x A z = B z = B
10 8 9 breqtrrd x A w B x A z = B w z
11 10 3exp x A w B x A z = B w z
12 5 6 11 rexlimd x A w B x A z = B w z
13 12 imp x A w B x A z = B w z
14 13 adantll φ w x A w B x A z = B w z
15 4 14 sylan2b φ w x A w B z ran x A B w z
16 15 ralrimiva φ w x A w B z ran x A B w z
17 breq1 y = w y B w B
18 17 ralbidv y = w x A y B x A w B
19 18 cbvrexvw y x A y B w x A w B
20 1 19 sylib φ w x A w B
21 16 20 reximddv3 φ w z ran x A B w z
22 breq1 w = y w z y z
23 22 ralbidv w = y z ran x A B w z z ran x A B y z
24 23 cbvrexvw w z ran x A B w z y z ran x A B y z
25 21 24 sylib φ y z ran x A B y z