Metamath Proof Explorer


Theorem inftmrel

Description: The infinitesimal relation for a structure W . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypothesis inftm.b B=BaseW
Assertion inftmrel WVWB×B

Proof

Step Hyp Ref Expression
1 inftm.b B=BaseW
2 elex WVWV
3 fveq2 w=WBasew=BaseW
4 3 1 eqtr4di w=WBasew=B
5 4 eleq2d w=WxBasewxB
6 4 eleq2d w=WyBasewyB
7 5 6 anbi12d w=WxBasewyBasewxByB
8 fveq2 w=W0w=0W
9 fveq2 w=W<w=<W
10 eqidd w=Wx=x
11 8 9 10 breq123d w=W0w<wx0W<Wx
12 fveq2 w=Ww=W
13 12 oveqd w=Wnwx=nWx
14 eqidd w=Wy=y
15 13 9 14 breq123d w=Wnwx<wynWx<Wy
16 15 ralbidv w=Wnnwx<wynnWx<Wy
17 11 16 anbi12d w=W0w<wxnnwx<wy0W<WxnnWx<Wy
18 7 17 anbi12d w=WxBasewyBasew0w<wxnnwx<wyxByB0W<WxnnWx<Wy
19 18 opabbidv w=Wxy|xBasewyBasew0w<wxnnwx<wy=xy|xByB0W<WxnnWx<Wy
20 df-inftm =wVxy|xBasewyBasew0w<wxnnwx<wy
21 1 fvexi BV
22 21 21 xpex B×BV
23 opabssxp xy|xByB0W<WxnnWx<WyB×B
24 22 23 ssexi xy|xByB0W<WxnnWx<WyV
25 19 20 24 fvmpt WVW=xy|xByB0W<WxnnWx<Wy
26 2 25 syl WVW=xy|xByB0W<WxnnWx<Wy
27 26 23 eqsstrdi WVWB×B