Metamath Proof Explorer


Theorem infxpenc2lem2

Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)

Ref Expression
Hypotheses infxpenc2.1 φAOn
infxpenc2.2 φbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
infxpenc2.3 W=xOn1𝑜ω𝑜x-1rannb
infxpenc2.4 φF:ω𝑜2𝑜1-1 ontoω
infxpenc2.5 φF=
infxpenc2.k K=yxω𝑜2𝑜W|finSuppxFyIW-1
infxpenc2.h H=ωCNFWKω𝑜2𝑜CNFW-1
infxpenc2.l L=yxωW𝑜2𝑜|finSuppxIωyYX-1-1
infxpenc2.x X=z2𝑜,wWW𝑜z+𝑜w
infxpenc2.y Y=z2𝑜,wW2𝑜𝑜w+𝑜z
infxpenc2.j J=ωCNF2𝑜𝑜WLωCNFW𝑜2𝑜-1
infxpenc2.z Z=xω𝑜W,yω𝑜Wω𝑜W𝑜x+𝑜y
infxpenc2.t T=xb,ybnbxnby
infxpenc2.g G=nb-1HJZT
Assertion infxpenc2lem2 φgbAωbgb:b×b1-1 ontob

Proof

Step Hyp Ref Expression
1 infxpenc2.1 φAOn
2 infxpenc2.2 φbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
3 infxpenc2.3 W=xOn1𝑜ω𝑜x-1rannb
4 infxpenc2.4 φF:ω𝑜2𝑜1-1 ontoω
5 infxpenc2.5 φF=
6 infxpenc2.k K=yxω𝑜2𝑜W|finSuppxFyIW-1
7 infxpenc2.h H=ωCNFWKω𝑜2𝑜CNFW-1
8 infxpenc2.l L=yxωW𝑜2𝑜|finSuppxIωyYX-1-1
9 infxpenc2.x X=z2𝑜,wWW𝑜z+𝑜w
10 infxpenc2.y Y=z2𝑜,wW2𝑜𝑜w+𝑜z
11 infxpenc2.j J=ωCNF2𝑜𝑜WLωCNFW𝑜2𝑜-1
12 infxpenc2.z Z=xω𝑜W,yω𝑜Wω𝑜W𝑜x+𝑜y
13 infxpenc2.t T=xb,ybnbxnby
14 infxpenc2.g G=nb-1HJZT
15 1 mptexd φbAGV
16 1 adantr φbAωbAOn
17 simprl φbAωbbA
18 onelon AOnbAbOn
19 16 17 18 syl2anc φbAωbbOn
20 simprr φbAωbωb
21 1 2 3 infxpenc2lem1 φbAωbWOn1𝑜nb:b1-1 ontoω𝑜W
22 21 simpld φbAωbWOn1𝑜
23 4 adantr φbAωbF:ω𝑜2𝑜1-1 ontoω
24 5 adantr φbAωbF=
25 21 simprd φbAωbnb:b1-1 ontoω𝑜W
26 19 20 22 23 24 25 6 7 8 9 10 11 12 13 14 infxpenc φbAωbG:b×b1-1 ontob
27 f1of G:b×b1-1 ontobG:b×bb
28 26 27 syl φbAωbG:b×bb
29 vex bV
30 29 29 xpex b×bV
31 fex G:b×bbb×bVGV
32 28 30 31 sylancl φbAωbGV
33 eqid bAG=bAG
34 33 fvmpt2 bAGVbAGb=G
35 17 32 34 syl2anc φbAωbbAGb=G
36 35 f1oeq1d φbAωbbAGb:b×b1-1 ontobG:b×b1-1 ontob
37 26 36 mpbird φbAωbbAGb:b×b1-1 ontob
38 37 expr φbAωbbAGb:b×b1-1 ontob
39 38 ralrimiva φbAωbbAGb:b×b1-1 ontob
40 nfmpt1 _bbAG
41 40 nfeq2 bg=bAG
42 fveq1 g=bAGgb=bAGb
43 42 f1oeq1d g=bAGgb:b×b1-1 ontobbAGb:b×b1-1 ontob
44 43 imbi2d g=bAGωbgb:b×b1-1 ontobωbbAGb:b×b1-1 ontob
45 41 44 ralbid g=bAGbAωbgb:b×b1-1 ontobbAωbbAGb:b×b1-1 ontob
46 15 39 45 spcedv φgbAωbgb:b×b1-1 ontob