Metamath Proof Explorer


Theorem inidl

Description: The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Assertion inidl RRingOpsIIdlRJIdlRIJIdlR

Proof

Step Hyp Ref Expression
1 intprg IIdlRJIdlRIJ=IJ
2 1 3adant1 RRingOpsIIdlRJIdlRIJ=IJ
3 prnzg IIdlRIJ
4 3 adantr IIdlRJIdlRIJ
5 prssi IIdlRJIdlRIJIdlR
6 4 5 jca IIdlRJIdlRIJIJIdlR
7 intidl RRingOpsIJIJIdlRIJIdlR
8 7 3expb RRingOpsIJIJIdlRIJIdlR
9 6 8 sylan2 RRingOpsIIdlRJIdlRIJIdlR
10 9 3impb RRingOpsIIdlRJIdlRIJIdlR
11 2 10 eqeltrrd RRingOpsIIdlRJIdlRIJIdlR