Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ideals
inidl
Next ⟩
unichnidl
Metamath Proof Explorer
Ascii
Unicode
Theorem
inidl
Description:
The intersection of two ideals is an ideal.
(Contributed by
Jeff Madsen
, 16-Jun-2011)
Ref
Expression
Assertion
inidl
⊢
R
∈
RingOps
∧
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
I
∩
J
∈
Idl
⁡
R
Proof
Step
Hyp
Ref
Expression
1
intprg
⊢
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
⋂
I
J
=
I
∩
J
2
1
3adant1
⊢
R
∈
RingOps
∧
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
⋂
I
J
=
I
∩
J
3
prnzg
⊢
I
∈
Idl
⁡
R
→
I
J
≠
∅
4
3
adantr
⊢
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
I
J
≠
∅
5
prssi
⊢
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
I
J
⊆
Idl
⁡
R
6
4
5
jca
⊢
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
I
J
≠
∅
∧
I
J
⊆
Idl
⁡
R
7
intidl
⊢
R
∈
RingOps
∧
I
J
≠
∅
∧
I
J
⊆
Idl
⁡
R
→
⋂
I
J
∈
Idl
⁡
R
8
7
3expb
⊢
R
∈
RingOps
∧
I
J
≠
∅
∧
I
J
⊆
Idl
⁡
R
→
⋂
I
J
∈
Idl
⁡
R
9
6
8
sylan2
⊢
R
∈
RingOps
∧
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
⋂
I
J
∈
Idl
⁡
R
10
9
3impb
⊢
R
∈
RingOps
∧
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
⋂
I
J
∈
Idl
⁡
R
11
2
10
eqeltrrd
⊢
R
∈
RingOps
∧
I
∈
Idl
⁡
R
∧
J
∈
Idl
⁡
R
→
I
∩
J
∈
Idl
⁡
R