Metamath Proof Explorer


Theorem innei

Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property V_ii of BourbakiTop1 p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006)

Ref Expression
Assertion innei J Top N nei J S M nei J S N M nei J S

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 neii1 J Top N nei J S N J
3 ssinss1 N J N M J
4 2 3 syl J Top N nei J S N M J
5 4 3adant3 J Top N nei J S M nei J S N M J
6 neii2 J Top N nei J S h J S h h N
7 neii2 J Top M nei J S v J S v v M
8 6 7 anim12dan J Top N nei J S M nei J S h J S h h N v J S v v M
9 inopn J Top h J v J h v J
10 9 3expa J Top h J v J h v J
11 ssin S h S v S h v
12 11 biimpi S h S v S h v
13 ss2in h N v M h v N M
14 12 13 anim12i S h S v h N v M S h v h v N M
15 14 an4s S h h N S v v M S h v h v N M
16 sseq2 g = h v S g S h v
17 sseq1 g = h v g N M h v N M
18 16 17 anbi12d g = h v S g g N M S h v h v N M
19 18 rspcev h v J S h v h v N M g J S g g N M
20 10 15 19 syl2an J Top h J v J S h h N S v v M g J S g g N M
21 20 expr J Top h J v J S h h N S v v M g J S g g N M
22 21 an32s J Top h J S h h N v J S v v M g J S g g N M
23 22 rexlimdva J Top h J S h h N v J S v v M g J S g g N M
24 23 rexlimdva2 J Top h J S h h N v J S v v M g J S g g N M
25 24 imp32 J Top h J S h h N v J S v v M g J S g g N M
26 8 25 syldan J Top N nei J S M nei J S g J S g g N M
27 26 3impb J Top N nei J S M nei J S g J S g g N M
28 1 neiss2 J Top N nei J S S J
29 1 isnei J Top S J N M nei J S N M J g J S g g N M
30 28 29 syldan J Top N nei J S N M nei J S N M J g J S g g N M
31 30 3adant3 J Top N nei J S M nei J S N M nei J S N M J g J S g g N M
32 5 27 31 mpbir2and J Top N nei J S M nei J S N M nei J S