Description: If the intersection with a non-majorizing element is an atom, the intersecting element is not an atom. (Contributed by NM, 26-Jun-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | intnat.b | |
|
intnat.l | |
||
intnat.m | |
||
intnat.a | |
||
Assertion | intnatN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnat.b | |
|
2 | intnat.l | |
|
3 | intnat.m | |
|
4 | intnat.a | |
|
5 | hlatl | |
|
6 | 5 | 3ad2ant1 | |
7 | 6 | ad2antrr | |
8 | eqid | |
|
9 | 8 4 | atn0 | |
10 | 7 9 | sylancom | |
11 | 10 | ex | |
12 | simpll1 | |
|
13 | 12 | hllatd | |
14 | simpll2 | |
|
15 | simpll3 | |
|
16 | 1 3 | latmcom | |
17 | 13 14 15 16 | syl3anc | |
18 | simplr | |
|
19 | 12 5 | syl | |
20 | simpr | |
|
21 | 1 2 3 8 4 | atnle | |
22 | 19 20 14 21 | syl3anc | |
23 | 18 22 | mpbid | |
24 | 17 23 | eqtrd | |
25 | 24 | ex | |
26 | 25 | necon3ad | |
27 | 11 26 | syld | |
28 | 27 | impr | |