| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intnat.b |
|
| 2 |
|
intnat.l |
|
| 3 |
|
intnat.m |
|
| 4 |
|
intnat.a |
|
| 5 |
|
hlatl |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
6
|
ad2antrr |
|
| 8 |
|
eqid |
|
| 9 |
8 4
|
atn0 |
|
| 10 |
7 9
|
sylancom |
|
| 11 |
10
|
ex |
|
| 12 |
|
simpll1 |
|
| 13 |
12
|
hllatd |
|
| 14 |
|
simpll2 |
|
| 15 |
|
simpll3 |
|
| 16 |
1 3
|
latmcom |
|
| 17 |
13 14 15 16
|
syl3anc |
|
| 18 |
|
simplr |
|
| 19 |
12 5
|
syl |
|
| 20 |
|
simpr |
|
| 21 |
1 2 3 8 4
|
atnle |
|
| 22 |
19 20 14 21
|
syl3anc |
|
| 23 |
18 22
|
mpbid |
|
| 24 |
17 23
|
eqtrd |
|
| 25 |
24
|
ex |
|
| 26 |
25
|
necon3ad |
|
| 27 |
11 26
|
syld |
|
| 28 |
27
|
impr |
|