Metamath Proof Explorer


Theorem intnatN

Description: If the intersection with a non-majorizing element is an atom, the intersecting element is not an atom. (Contributed by NM, 26-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses intnat.b B=BaseK
intnat.l ˙=K
intnat.m ˙=meetK
intnat.a A=AtomsK
Assertion intnatN KHLXBYB¬Y˙XX˙YA¬YA

Proof

Step Hyp Ref Expression
1 intnat.b B=BaseK
2 intnat.l ˙=K
3 intnat.m ˙=meetK
4 intnat.a A=AtomsK
5 hlatl KHLKAtLat
6 5 3ad2ant1 KHLXBYBKAtLat
7 6 ad2antrr KHLXBYB¬Y˙XX˙YAKAtLat
8 eqid 0.K=0.K
9 8 4 atn0 KAtLatX˙YAX˙Y0.K
10 7 9 sylancom KHLXBYB¬Y˙XX˙YAX˙Y0.K
11 10 ex KHLXBYB¬Y˙XX˙YAX˙Y0.K
12 simpll1 KHLXBYB¬Y˙XYAKHL
13 12 hllatd KHLXBYB¬Y˙XYAKLat
14 simpll2 KHLXBYB¬Y˙XYAXB
15 simpll3 KHLXBYB¬Y˙XYAYB
16 1 3 latmcom KLatXBYBX˙Y=Y˙X
17 13 14 15 16 syl3anc KHLXBYB¬Y˙XYAX˙Y=Y˙X
18 simplr KHLXBYB¬Y˙XYA¬Y˙X
19 12 5 syl KHLXBYB¬Y˙XYAKAtLat
20 simpr KHLXBYB¬Y˙XYAYA
21 1 2 3 8 4 atnle KAtLatYAXB¬Y˙XY˙X=0.K
22 19 20 14 21 syl3anc KHLXBYB¬Y˙XYA¬Y˙XY˙X=0.K
23 18 22 mpbid KHLXBYB¬Y˙XYAY˙X=0.K
24 17 23 eqtrd KHLXBYB¬Y˙XYAX˙Y=0.K
25 24 ex KHLXBYB¬Y˙XYAX˙Y=0.K
26 25 necon3ad KHLXBYB¬Y˙XX˙Y0.K¬YA
27 11 26 syld KHLXBYB¬Y˙XX˙YA¬YA
28 27 impr KHLXBYB¬Y˙XX˙YA¬YA