Metamath Proof Explorer


Theorem ioorinv2

Description: The function F is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypothesis ioorf.1 F=xran.ifx=00supx*<supx*<
Assertion ioorinv2 ABFAB=AB

Proof

Step Hyp Ref Expression
1 ioorf.1 F=xran.ifx=00supx*<supx*<
2 ioorebas ABran.
3 1 ioorval ABran.FAB=ifAB=00supAB*<supAB*<
4 2 3 ax-mp FAB=ifAB=00supAB*<supAB*<
5 ifnefalse ABifAB=00supAB*<supAB*<=supAB*<supAB*<
6 n0 ABxxAB
7 eliooxr xABA*B*
8 7 exlimiv xxABA*B*
9 6 8 sylbi ABA*B*
10 9 simpld ABA*
11 9 simprd ABB*
12 id ABAB
13 df-ioo .=x*,y*z*|x<zz<y
14 idd w*B*w<Bw<B
15 xrltle w*B*w<BwB
16 idd A*w*A<wA<w
17 xrltle A*w*A<wAw
18 13 14 15 16 17 ixxlb A*B*ABsupAB*<=A
19 10 11 12 18 syl3anc ABsupAB*<=A
20 13 14 15 16 17 ixxub A*B*ABsupAB*<=B
21 10 11 12 20 syl3anc ABsupAB*<=B
22 19 21 opeq12d ABsupAB*<supAB*<=AB
23 5 22 eqtrd ABifAB=00supAB*<supAB*<=AB
24 4 23 eqtrid ABFAB=AB