Metamath Proof Explorer


Theorem ioorinv2

Description: The function F is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypothesis ioorf.1 F = x ran . if x = 0 0 sup x * < sup x * <
Assertion ioorinv2 A B F A B = A B

Proof

Step Hyp Ref Expression
1 ioorf.1 F = x ran . if x = 0 0 sup x * < sup x * <
2 ioorebas A B ran .
3 1 ioorval A B ran . F A B = if A B = 0 0 sup A B * < sup A B * <
4 2 3 ax-mp F A B = if A B = 0 0 sup A B * < sup A B * <
5 ifnefalse A B if A B = 0 0 sup A B * < sup A B * < = sup A B * < sup A B * <
6 n0 A B x x A B
7 eliooxr x A B A * B *
8 7 exlimiv x x A B A * B *
9 6 8 sylbi A B A * B *
10 9 simpld A B A *
11 9 simprd A B B *
12 id A B A B
13 df-ioo . = x * , y * z * | x < z z < y
14 idd w * B * w < B w < B
15 xrltle w * B * w < B w B
16 idd A * w * A < w A < w
17 xrltle A * w * A < w A w
18 13 14 15 16 17 ixxlb A * B * A B sup A B * < = A
19 10 11 12 18 syl3anc A B sup A B * < = A
20 13 14 15 16 17 ixxub A * B * A B sup A B * < = B
21 10 11 12 20 syl3anc A B sup A B * < = B
22 19 21 opeq12d A B sup A B * < sup A B * < = A B
23 5 22 eqtrd A B if A B = 0 0 sup A B * < sup A B * < = A B
24 4 23 eqtrid A B F A B = A B